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3.1 Introduction 
This volume has been written to help developers and certification authorities identify current best practices for the 
use of object-oriented technology (OOT) in aviation. As OOT in embedded and safety critical systems is still an 
evolving discipline, additional information that was not available when this material was compiled may be available 
in the future. In any case, the OOT standards and methods the developer intends to use should be documented in the 
planning process documents and presented to the certification authorities as early as possible in the program to 
reduce risk. 

3.1.1 Purpose 
The purpose of this volume is to identify best practices to safely implement OOT in aviation by providing some 
known ways to address the issues documented in Volume 2. The guidelines presented in this volume are not 
necessarily the only way to address these issues. There may also be other means that are effective, and the handbook 
may itself define alternative ways to resolve a given issue. In some areas, this volume does not provide best 
practices but, rather, cites areas of ongoing research that should be monitored by prospective OOT developers. Such 
areas of research occur most notably in the areas control and data coupling, and structural coverage analysis as 
applied to OOT in aviation. In all cases, it should be noted that it is still the developer’s responsibility to 
demonstrate that the OOT methods and processes they have selected to utilize can, and will, provide the appropriate 
integrity for safe software implementation. 

3.1.2 Organization 
This volume is organized in sections as follows: 

 Introduction 

 Mapping of  Volume 2 Issues to Volume 3 Guidelines 

Guidelines for: 

 Single Inheritance and Dynamic Dispatch 
 Multiple Inheritance  
 Templates 
 Inlining  
 Type Conversion 
 Overloading and Method Resolution 
 Dead And Deactivated Code, And Reuse 
 Object-Oriented Tools 
 Traceability 
 Structural Coverage 

 References for Volume 3 

 Index 

 Appendix A Frequently Asked Questions 

 Appendix B Extended Guidelines And Examples 

 NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  3-1 
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3.2 Mapping of Volume 2 Issues to Volume 3 Guidelines 

3.2.1 Key Concerns/Issues Addressed by the Guidelines 
The following table provides a mapping between the key concerns with associated issues in volume 2 and the 
volume 3 guidelines that address them. Footnotes are provided when an explanation of the mapping (the manner in 
which the guidelines address a particular concern or a specific issue) is required.   

When volume 3 provides alternative ways to address a key concern, more than one row appears in the Guidelines 
column opposite the key concern in the table.  The key concern can then be addressed by following the guidelines 
listed in any one of these rows. That is, only one guideline of those listed (separated by OR) needs to be followed to 
address the concern The exception is where a section identifies an area of active research where no guidelines 
currently exist. 

Key concern IL #’s Guidelines 

Volume 2, section 2.3.1.1 

How does the life cycle data from an OO 
development process map to the life 
cycle data specified in DO-178B? 

77, 87 Section 3.10.3 

Section 3.11.4.1 

Section 3.11.6.1  

Volume 2, section 2.3.1.2 

Are OO approaches adequate to define 
all types of requirements? 

Specifically, can we capture all 
nonfunctional requirements of interest? 

And can we avoid problems associated 
with graphical grouping? 

63, 75, 78, 79, 80 Section 3.10.3  

Section 3.11.5.1 

Section 3.11.6.1  

Section 3.11.9.1 

IL 78 and IL 80 may not be adequately addressed 
in Volume 3. 

Volume 2, section 2.3.1.2 

A well-define means to map formal 
specifications to natural language and/or 
other less formal notations (e.g. UML) is 
needed to make formal specifications 
generally accessible. 

73 Not addressed in Volume 3. 

Volume 2, section 2.3.1.3 

Have language features such as multiple 
inheritance been evaluated carefully in 
the planning process? 

And have appropriate restrictions been 
established, documented, and followed? 

38, 58 Other issue list entries on multiple interface and 
multiple implementation inheritance may 
elaborate on the underlying issues that motivate 
IL 38. 

IL 38 and IL 58 may not be adequately addressed 
in Volume 3.  

Volume 2, section 2.3.2.1.1 

Is subtyping used to improperly define 
types that are not substitutable for their 
parent types? 

17, 22, 23, 42, 90, 
95 

Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3,  

Complete initialization rule:, 

Section 3.3.4.3, Initialization dispatch rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.3.6.3, 

Section 3.3.7.3 (optional), and 

Section 3.3.8.3 
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OR  

Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3,  

Complete initialization rule:, 

Section 3.3.4.3, Initialization dispatch rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.3.6.3, 

Section 3.3.7.3, and 

Section 3.3.9.3 

  

OR  

Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3,  

Complete initialization rule:, 

Section 3.3.4.3, Initialization dispatch rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.3.6.3,  

Section 3.3.7.3 (optional), and 

Section 3.3.10.3 

Volume 2, section 2.3.2.1.2 

How do we ensure that new methods 
defined by a subclass do not introduce 
anomalous behavior by producing a state 
inconsistent with that defined by the 
superclass? 

91 Same as Volume 2, section 2.3.2.1.1 (above)  

Section 3.3.12.3, 

Section 3.4.4.3, 

Section 3.4.5.3,  

Section 3.4.6.3, and 

Section 3.4.8.3 

OR 

Section 3.3.12.3, 

Section 3.4.4.3, 

Section 3.4.6.3,  

Section 3.4.7.3, and 

Section 3.4.8.3 

Volume 2, section 2.3.2.2.1 

How do we ensure that the developer’s 
intent is always clear when using OO 
features such as multiple inheritance, 
and when creating very deep inheritance 
hierarchies? 

7, 10, 15, 21, 24, 
25, 27, 28, 29, 30, 
33, 37 

In addition, the following section identifies an area 
of active research related to the developer’s 
understanding of data and control coupling 
between inherited methods: Section 3.12.6.1 
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Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:,  

Section 3.3.4.3,  

Complete initialization rule:, 

Section 3.3.4.3,  Initialization dispatch rule:, 

Section 3.3.5.3, 

Section 3.3.6.3, 

Section 3.3.7.3 (optional), and 

Section 3.3.8.3  

OR 

Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:,  

Section 3.3.4.3,  

Complete initialization rule:, 

Section 3.3.4.3, Initialization dispatch rule:, 

Section 3.3.5.3, 

Section 3.3.6.3, 

Section 3.3.7.3, and 

Section 3.3.9.3 

Volume 2, section 2.3.2.2.2 

How do we avoid errors associated with 
the unintentional/accidental overriding of 
methods? 

20, 31, 92, 93, 94, 
96, 97, 99 

OR  

Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:,  

Section 3.3.4.3,  

Complete initialization rule:,  

Section 3.3.4.3, Initialization dispatch rule:, 

Section 3.3.5.3, 

Section 3.3.6.3, 

Section 3.3.7.3 (optional), and 

Section 3.3.10.3 

Volume 2, section 2.3.2.2.2 

How do we avoid the confusion and 
human error associated with the 
definition of overloaded operations that 
have the same name but different seman 
tics? 

60 Sections 3.8.3.2  and 3.8.4.2 

Volume 2, section 2.3.2.3.1 

Traditional allocation and deallocation 

66 Issue is not specific to OOT. 
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algorithms may be unpredictable in terms 
of their worst-case memory use and 
execution times, resulting in 
indeterminate execution profiles. 

Not addressed in Volume 3. 

Volume 2, section 2.3.2.3.2 

How do we ensure that subclass 
methods are not called by superclass 
constructors before all the attributes of 
the subclass have been initialized? 

19, 98 Section 3.3.4.3,  

Complete initialization rule:,  

Section 3.3.4.3, Initialization dispatch rule:,  

Section 3.3.5.3, and 

Section 3.3.12.3 

Volume 2, section 2.3.2.4.1 

How do we identify dead and deactivated 
code in OOT programs and reusable 
components? 

70, 71, 106 Section 3.11.8.1, Section 3.9.4.2, and Section 
3.11.11.1 

Volume 2, section 2.3.2.4.2 

How do we ensure that deactivated code 
is properly addressed when working with 
general purpose libraries and 
frameworks? 

1, 57 Sections 3.9.3.2, 3.11.8.1, and 3.11.11.1 

Section 3.3.4.2, assumption 3, 

Section 3.3.4.3, Simple dispatch rule: , 

Section 3.4.5.3, 

Section 3.6.3.2, and 

Section 3.10.9.2 

OR 

Section 3.3.4.2, assumption 3,  

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.4.7.3, 

Section 3.6.3.2, and 

Section 3.10.9.2 

Volume 2, section 2.3.3.1.1 

Dynamic dispatch, polymorphism, 
multiple implementation inheritance, and 
inlining may complicate data and control 
flow analysis. 

2, 9, 16, 43, 56, 89 

Note: In addition, the following section identifies 
an area of active research: Section 3.12.6.1 

Section 3.3.4.2, assumption 3. 

Section 3.3.4.3, Simple dispatch rule: 

Section 3.3.6.3, Substitutability compliance rule: 

Section 3.3.8 

Volume 2, section 2.3.3.1.2 

How do we account for dynamic dispatch 
and the run time classes of objects when 
measuring the structural coverage of 
object-oriented program? 

5, 11, 48, 49, 55 

OR 

Section 3.3.4.2, assumption 3. 

Section 3.3.4.3, Simple dispatch rule: 

Section 3.3.6.3, Substitutability compliance rule: 

Section 3.3.9 
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  OR 

Section 3.3.4.2, assumption 3. 

Section 3.3.4.3, Simple dispatch rule: 

Section 3.3.6.3, Substitutability compliance rule: 

Section 3.3.10 

Volume 2, section 2.3.3.1.2 

How do we measure structural coverage 
when inliing and templates are used? 

45, 47, 52 Sections 3.5.5.1.2, 3.5.5.3.2, and 3.6.3.2 

Volume 2, section 2.3.3.1.3  

How do we avoid problems related to 
timing analysis when using dynamic 
dispatch? 

3 , 107 Section 3.3.4.3, Dispatch time rule: 

Volume 2, section 2.3.3.1.3 

How do we avoid problems related to 
timing analysis when using inlining, 
templates, and macro expansion? 

44, 50, 53 Sections 3.5.3.3, 3.5.4.3, and 3.6.3.2 

Volume 2, section 2.3.3.1.4 

How do we provide source to object code 
traceability when using dynamic 
dispatch? 

6,  8, 12 Section 3.3.4.3, Object code 
traceability rule: 

Volume 2, section 2.3.3.1.4 

How do we provide source to object code 
traceability in non-level A systems? 

81 Source to object code traceability is not required 
by DO-178B for non-level A systems.  

Not addressed on Volume 3. 

Volume 2, section 2.3.3.1.4 

How do we provide source to object code 
traceability when using inlining? 

46 Section 3.6.3.2 

Volume 2, section 2.3.3.1.4 

How do we provide source to object code 
traceability when using implicit type 
conversion? 

59 Sections 3.7.4.2, 3.7.5.2, and 3.7.6.2 

Note: Above sections do not specifically address 
performance and timing issues (IL59) nor source 
to object code traceability (vol. 2, section 
2.3.3.1.4). 

Volume 2, section 2.3.3.2.1 

How is functional coverage of low level 
requirements determined? 

62 Sections 3.5.4.3,  3.9.4.2, and 3.11.4.1 

Volume 2, section 2.3.3.2.1 

How do we ensure adequate 
requirements coverage at all levels of 
integration when the number of test 
cases may be excessively large? 

64 Section 3.3.10.3 
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Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3,  

Complete initialization rule:, 

Section 3.3.4.3, Initialization dispatch rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.3.6.3, 

Section 3.3.7.3 (optional), 

Section 3.3.8.3, and 

Section 3.11.7.1 

OR 

Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3,  

Complete initialization rule:, 

Section 3.3.4.3, Initialization dispatch rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.3.6.3, 

Section 3.3.7.3  

Section 3.3.9.3, and 

Section 3.11.7.1 

Volume 2, section 2.3.3.2.2 

To what extent can/should test cases 
developed for a class be reused to test 
its subclasses? 

4, 18 

OR 

Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3,  

Complete initialization rule:, 

Section 3.3.4.3, Initialization dispatch rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.3.6.3, 

Section 3.3.7.3 (optional) 

Section 3.3.10.3, and 

Section 3.11.7.1 

Volume 2, section 2.3.3.3.1 

How do we define unique configuration 
items in OOT systems? 

76 Sections 3.10.4.2 and 3.11.11.1 

Volume 2, section 2.3.3.3.2 34, 74, 88 Sections 3.4.4.3, 3.10.4.2, 3.11.4.1, 3.11.10.1, 
and  3.11.11.1 
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OR 

Sections 3.4.5.3, 3.10.4.2, 3.11.4.1, 3.11.10.1, 
and  3.11.11.1 

OR 

Sections 3.4.6.3, 3.10.4.2, 3.11.4.1, 3.11.10.1, 
and  3.11.11.1 

How do OO tools and modeling 
languages affect the way configuration 
items are managed and changed? 

 

OR 

Sections 3.4.7.3, 3.10.4.2, 3.11.4.1, 3.11.10.1, 
and  3.11.11.1 

Volume 2, section 2.3.3.4.1 

How do we ensure traceability between 
functional requirements and object-
oriented implementations? 

61, 69 Section 3.3.4.3, Simple overriding rule:, 

Section 3.3.4.3,  

Complete initialization rule:, 

Section 3.3.4.3, Initialization dispatch rule:, 

Section 3.3.4.3, Accidental override rule:, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.8.4.2,  

Section 3.9.4.2,   

Section 3.11.4.1, and 

Section  3.11.9.1 

Section 3.3.4.2, assumption 3, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.11.5.1, 

Section 3.11.6.1, and 

Section 3.11.7.1 

Section 3.3.4.2, assumption 3, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.4.4.3, 

Section 3.4.5.3, 

Section 3.4.6.3 

Section 3.11.5.1, 

Section 3.11.6.1, and 

Section 3.11.7.1 

Volume 2, section 2.3.3.4.2 

How do we ensure traceability when 
constructing inheritance hierarchies? 

13, 35, 104 

Section 3.3.4.2, assumption 3, 

Section 3.3.4.3, Simple dispatch rule:, 

Section 3.4.4.3, 

Section 3.4.6.3, 

Section 3.4.7.3, 

Section 3.11.5.1, 

Section 3.11.6.1, and 

Section 3.11.7.1 
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Volume 2, section 2.3.3.4.3 

How do we deal with behavioral 
requirements that map to multiple 
graphical views in OOT models? 

72 Sections 3.10.3 and 3.11.6.1 

Volume 2, section 2.3.3.4.4 

How do we maintain traceability when 
using an iterative development process 
that leads to a large number of changes 
to a large number of artifacts? 

105 Section 3.11.10.1 

Volume 2, section 2.3.4.1 

How can we ensure that visual modeling 
tools support compliance with DO-178B 
without introducing additional verification 
burden? 

101, 102 Sections 3.10.4.2,  3.10.5.2 and 3.10.6.3 

Volume 2, section 2.3.4.1 

How can we ensure that structural 
coverage tools provide a reliable 
mearsurement of the structural coverage 
achieved? 

103 Sections 3.10.7, 3.10.8.2, and 3.10.9.2  

 Volume 2, section 2.3.4.2 

Considering the rapid rate of tool 
evolution and new tool types, how will 
tools be identified and maintained to 
meet long-term needs for development 
and maintenance?  

86 The known type of tools for which best practices 
have been identified were addressed in the 
Handbook.  

Volume 2, section 2.3.4.2 

Considering the rapid rate of tool 
evolution and new tool types, how can 
we ensure that tools are properly 
controlled and retrievable? 

84, 85 Issues are not specific to OOT. 

Not addressed in Volume 3. 

 

Volume 2. section 2.3.4.3 

How is tool qualification assured to 
address, for example,  tool validation, 
independence, configuration 
management? 

83 Issue is not specific to OOT. 

Not addressed in Volume 3. 

 

Volume 2. section 2.3.4.3 

How can we ensure that tool qualification 
criteria are appropriately identified and 
applied to OO tools?  

82, 100 Sections 3.10.5.2 and 3.10.4.2 

Not categorized in Volume 2 26 Section 3.3.3 

Not categorized in Volume 2 40 Not addressed in Volume 3. 

Not categorized in Volume 2 51 Section 3.5.5.1.2 

Not categorized in Volume 2 54 Not addressed in Volume 3. 

Not categorized in Volume 2 65 Not addressed in Volume 3. 

Not categorized in Volume 2 67 Not addressed in Volume 3. 

Not categorized in Volume 2 68 Due to lack of mainstream languages that support 
multiple dispatch, guidelines developed to 
address this issue were dropped from the 
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handbook after the OOTiA Workshop #2. 

Not addressed in Volume 3. 

Table 3.2-1 Mapping of Key Concerns and Guidelines
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3.3 Single Inheritance and Dynamic Dispatch 

3.3.1 Purpose 
This section provides guidelines for the safe implementation and use of single inheritance and dynamic dispatch 
(also known as dynamic binding) in projects that use object-oriented (OO) technology (OOT). 

3.3.2 Background  
Inheritance. Inheritance supports the organization of object-oriented systems in terms of classes and class 
hierarchies. This is a fundamental concept that permits OO systems to directly represent and classify objects 
representing real-world entities from the problem domain without introducing redundancy.  

Classes. Classes may define a variety of elements, including operations (which specify the services provided by the 
class), methods (which provide the code to implement operations), attributes (which represent stored data values), 
and associations (representing references to other objects). 

Visibility. Class elements may be restricted in terms of their visibility. Unified Modeling Language (UML) [4], for 
instance, distinguishes between elements that are visible to all clients that have access to the class itself (public 
access), elements that are visible to clients within the same package (package access), and elements that are 
accessible only to subclasses (protected access). Elements may also be accessible to both classes in the same 
package and to subclasses (e.g., in Java), or to a named set of classes (e.g., in Eiffel).   

Operations. Operations accessible to classes other than the defining class and its subclasses are sometimes referred 
to as client operations. All operations are identified by their signatures. The signature of an operation consists of its 
name and a list of the types of its parameters – the information needed to match a call to the operation being called. 
Consider the UML definition of an operation “m (p: Integer, q: Float)”. The signature of this operation consists of its 
name “m” and its parameter types “Integer” and “Float”. In some languages, the return parameter (if any) is 
considered a part of the signature, while in others (such as C++) it is not.   

Most OO languages support constructors and destructors. A constructor is an operation called by the run time 
environment when a new object is allocated to ensure it is properly initialized. Conversely, a destructor is an 
operation called by the run time environment when an object is deallocated to ensure any resources held by the 
object are released. In most OO languages, a class may define more than one constructor, each with its own 
signature. The constructor called by the run-time environment is the one that matches the arguments supplied by the 
program at the point it requests the allocation of a new object. Destructors typically have no parameters and, as a 
result, at most one destructor is associated with a class. 

Constraints. Class definitions may also include constraints in the form of preconditions, postconditions, and 
invariants. Preconditions represent constraints that must hold at the time a given method is called. Postconditions 
represent constraints that are guaranteed to hold once execution of the method completes, provided its preconditions 
were first met. Invariants represent constraints that are established by the class constructor and are considered to be a 
part of the precondition and postcondition of every client operation. Additional constraints may also apply to the 
relationships between classes. Constraints may be used to specify safety predicates as well as conditions for 
correctness, and acceptable use. 

Class hierarchies. Class hierarchies consist of classes connected via generalization relationships. In such a 
relationship, the more general of the classes is termed the superclass, while the more specialized class is termed the 
subclass. The relationship itself is also referred to as subclassing or subtyping. 

The class hierarchy may be extended to any depth, although very deep class hierarchies may cause difficulties. 
Subclasses inherit the elements of their superclasses. Subclasses may also extend these superclass definitions to 
include additional elements they define themselves, or redefine elements by overriding their inherited definitions. 

Single inheritance allows each class to have at most one immediate superclass, while multiple inheritance permits a 
class to have more than one immediate superclass. Interface inheritance involves the inheritance of only interface 
elements (such as operation specifications and constraints), while implementation inheritance involves the 
inheritance of implementation elements (such as methods, attributes, and references to other objects).  
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Polymorphism. In most object-oriented languages, an object is permanently assigned a run-time class at the point at 
which it is allocated and initialized. Although the run-time class of the object never changes, the object can be 
treated not only as a member of its run-time class, but also as a member of any superclass of this class. This ability 
to treat an object as a member of any of its superclasses is referred to as polymorphism. Polymorphism supports the 
replacement of general implementations with more specialized ones. It, however, requires strict adherence to 
subtyping rules that guarantee that instances of subclasses behave like instances of their superclasses. 

Substituability. The basic subtyping rules are those given by Liskov and Wing [7]. Because they guarantee that we 
can substitute an instance of a subclass for an instance of a superclass, they are often collectively referred as the 
Liskov Substitution Principle (LSP). Although the term LSP was not used by the authors [7], it has become a 
convenient way to refer to the principles required to guarantee substitutability and will be used in such context to 
discuss inheritance issues. The subtyping rules have also been popularized by Bertrand Meyer [17][18] in terms of a 
contracting metaphor between the clients of a class and its implementation. 

In contracting terms, the client is responsible for establishing the precondition of an operation before calling it. 
Given this precondition, the method that  implements the operation is then responsible for either delivering on the 
postcondition, or reporting an error to the client. The class invariant is established by the constructor when the object 
is first created, and must be maintained by all client operations. As a result, it is considered to be a part of the 
precondition and the postcondition of every client operation. The class invariant, however, need not hold at all 
points during the execution of a client operation, only at the beginning and at the end. This is sufficient to ensure 
that temporary violations of the invariant are not observable by clients if data is encapsulated and calls to client 
operations are properly synchronized. 

Substitutability requires, quite simply, that subclasses not break the contract between client and implementation 
established by their superclasses. This applies both to the redefinition of one operation by another operation and the 
implementation of an operation by a method. As a result, the precondition of an operation in the subclass must be 
weaker (demand less) or the same as the precondition of the same operation in the superclass. Conversely, the 
postcondition must either be stronger (deliver more) or the same. Viewed in this way, substitutability requires that 
we not demand more of clients, i.e., the types of input parameters must be either be made more general or left 
unchanged, and that we deliver at least as much as promised, i.e., the types of output parameters must either be made 
more specific or left unchanged. 

With regard to errors, the subclass version of an operation can only report the same types of errors as its superclass 
version. Otherwise clients would be expected to handle error cases that were not part of the original contract. 

Substitutability also applies to changes to the signatures of operations introduced in subclasses. In this regard, the 
types of an operation’s input parameters are logically a part of its precondition. Similarly the types of an operation’s 
output parameters (and any return parameter type) are logically a part of its postcondition. In most OO languages, 
dynamic dispatch is used to associate a method with a call based on the run-time type of the target object. Dynamic 
dispatch is not related to dynamic linking or dynamic link libraries, nor is it any more dynamic than the use of a case 
statement to explicitly select a method based on the run-time type of the target object.  

Dynamic dispatch. Method selection based only on the type of the target object is referred to as single dispatch 
(since it involves only consideration of the run-time class of the object, i.e., a single parameter). In a few OO 
languages, method selection also includes the run-time classes of the remaining parameters. This is referred to as 
multiple dispatch [14]. The methods considered for selection are referred to as multi-methods. Languages that 
support multiple dispatch are more flexible in terms of the overriding of methods than single dispatch languages 
(and able to deal more elegantly with issues such as the binary methods problem [12][13] Analogous to single 
dispatch, multiple dispatch is logically equivalent to the use of a series of nested case statements for method 
selection. 

Issues and guidelines. A number of issues arise when using single inheritance and dynamic dispatch that may make 
compliance with DO-178B difficult. Volume 2 documents the issues, related DO-178B sections and objectives, and 
applicable guidelines. Guidelines assume that all source code is available for software developed to meet DO-178B 
levels A, B, and C. In general, these “guidelines” do not represent new “guidance”, but an interpretation of existing 
guidance (DO-178B) with respect to the use of particular OO features. The “rules” associated with these guidelines 
are also rules only in the sense that they must be followed in order to adopt the given approach.  Often there are also 
alternative approaches that can be followed in order to address the same issues and still comply with DO-178B. 
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3.3.3 Overall Approach 
This section is intended to provide an approach for addressing DO-178B objectives when using OO features related 
to single inheritance and dynamic dispatch. The issues list appearing in volume 2 specifies potential obstacles to 
DO-178B compliance. This list is not intended to address only OO unique issues, but also related issues that are of 
particular importance to the use of single inheritance and dynamic dispatch. 

Where it appears possible to use a feature or combination of features in a way that complies with DO-178B, we have 
provided guidelines that describe an associated approach. The existence of these guidelines, however, does not 
constitute a recommendation that the feature(s) be used, only acceptance that the given guidelines resolve the issues 
in a manner consistent with DO-178B. 

The overall collection of guidelines is also intended to be open-ended.  As a result, new approaches and new 
guidelines may be added that address the same issues as existing approaches, under different circumstances. 

The guidelines on Inheritance with Overriding address the core issues related to inheritance, overriding and dynamic 
dispatch. Because all these features are closely related, they are addressed together, rather than separately. In 
addition, the rules apply both to redefinition of one operation by another and the implementation of an operation by 
a method where operation and method are defined using UML1 [4]. The emphasis is on simplicity through the strict 
enforcement of a small set of basic principles, an approach similar to that taken by Meyer with respect to Eiffel [18].   

Note that, there may be some situations in which it is entirely reasonable to use inheritance to support code sharing 
without intending to achieve type substitutability. The aim is usually to achieve aggregation with export of methods 
(and possibly attributes) from the aggregated class(es). The problem is that most OO programming languages do not 
distinguish this form of inheritance from subtyping inheritance (or provide a mechanism for aggregation with export 
of features). Inheritance should be used for this purpose only when it is documented and the use of polymorphism 
and dynamic dispatch in respect of these classes is avoided.  

The guidelines on Subtyping and Formal Subtyping complement those on Inheritance with Overriding by specifying 
how to test for superclass/subclass compatibility. Several different approaches are possible. The simplest involves 
unit level testing and the inheritance of unit level test cases as in the guidelines for Unit Level Testing of 
Substitutability. For organizations that want to do all testing at a system level, two approaches are provided. The 
guideleines for System Level Testing of Substitutability Using Assertions involve instrumentation of the code with 
assertion checks. The guidelines for System Level Testing of Substitutability Using Specialized Test Cases involve 
the development of specialized versions of system level test cases for this purpose. 

Note that, although the subtyping guidelines address compliance from a behavioral perspective, inheritance involves 
both classification and implementation, and the valid use of inheritance need not be limited to subtyping (although it 
often is, e.g., by UML).  

The remaining guidelines address special cases and individual issues. The guidelines on Method Extension deal with 
the definition of a subclass method as an extension of an inherited version of the same method. It applies most often 
to constructors, but can be used to extend the implementation of any method. 

The guidelines on Class Coupling address concerns related to flow analysis between superclass and subclass 
definitions. They recommend the definition of an abstract interface between a class and its subclasses analogous to 
the client interface for the class.  

The guidelines on Deep Hierarchy provide a rule to help identify class hierarchies that are “too deep”. Unlike the 
rules associated with the other patterns, this is intended only as a rule of thumb. Engineering judgment is required to 
balance the tradeoffs associated with any proposed changes. 

3.3.4 Inheritance with Overriding 
This section provides a set of guidelines on the use of inheritance, overriding, and dynamic dispatch which are 
equivalent to the use of hand-coded dispatch using case statements or compound if statements. When these 

                                                           
1 Use of UML is not a requirement. Users are free to choose their own approach to modeling and OO development.  

3-13 



Volume 3 DRAFT 

guidelines are extended to include behavioral subtyping, they provide explicit criteria to verify substitutability. 
These guidelines assume the use of languages that support single dispatch on the target object. 

3.3.4.1 Motivation 
The unrestricted use of dynamic dispatch raises a number of issues with respect to certification, especially with 
regard to weakly typed languages, and systems that permit the run-time loading of new classes (that are not a part of 
a previously verified system configuration). With suitable language restrictions (i.e., a precisely defined language 
subset that permits use of static analysis techniques), dynamic dispatch is semantically equivalent to the use of hand-
coded dispatch methods containing nested case statements or compound if statements. The automation of dynamic 
dispatch by the compiler is then equivalent to the auto-generation of these dispatch routines and inlined calls to 
them. This treatment as an inlined call, combined with compliance with structural coverage criteria identified in 
Sections 3.10 and 3.12 , provides a means to ensure compliance with DO-178B.  

3.3.4.2 Applicability 
These guidelines assume: 

1. a strongly typed language, 
2. single dispatch, 
3. the set of classes associated with the system is statically known, 
4. no dynamic classification (i.e. the run-time class of an object never changes) 
5. use of polymorphism. 

3.3.4.3 Guidelines 
The following rules define a form of inheritance, overriding, and dynamic dispatch which is equivalent to hand-
coded dispatch using case statements or compound if statements: 

1. Simple overriding rule:  

An operation may redefine an inherited operation, and a method may implement an operation so long as changes 
to its signature guarantee substitutability.  

Specifically, a redefined operation may be made more visible to clients.  And a redefining operation or 
implementing method may be made more restrictive regarding the types of errors it can report to clients (e.g., as 
exceptions or by setting error return codes). 

With regard to parameter types, an operation may override an inherited operation or a method may implement an 
operation by supertyping its input parameters, or subtyping its return type or the types of output parameters.  The 
types of parameters that represent both inputs and outputs must remain unchanged (invariant).  No other form of 
overriding should be allowed for languages supporting only single dispatch. 

2. Accidental override rule:  

To ensure that overriding is always intentional rather than accidental, design and code inspections should consider 
whether locally defined features are intended to override inherited  features with a matching signature2, 3. 

3. Simple dispatch rule:  

When an operation is invoked on an object, a method associated with the operation in its run time class should be 
executed. This rule applies to all calls except explicit calls to superclass methods, which should be addressed as 
described by the Method Extension guidelines.                                                                                                                                           

 

                                                           
2  When the language itself does not allow the user to make the intent to override an inherited operation/method explicit. 
3 As defined in the Glossary, a feature is an attribute, operation, or method. This includes attributes that reference other objects (i.e., association 
ends). 
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4. Complete initialization rule:  

Every attribute must be initialized to a value consistent with the class invariant by the class constructor.  

5. Initialization dispatch rule: 

No overridden method should be called during the initialization (construction) of an object. 

6. Dispatch time rule: 

All dispatch times should be bounded and deterministic 

7. Object code traceability rule: 

Everywhere concerns about source code to object code traceability and timing analysis dictate, the compiler vendor 
may be asked to provide evidence of deterministic, bounded mapping of the dispatched call. If the evidence is not 
available from the compiler vendor, it may be necessary to examine the structure of the compiler-generated code 
and data structures (e.g., method tables) at the point of call. 

A dispatching method call is considered semantically equivalent to the invocation of a dispatching routine 
containing a case statement of the form: 

case of <target-object-run-time-class> 

case <class>: 

<statically-resolved-call-to-method-implemented-by-class>; 

... 

end 

Each case of this case statement handles dispatch to an implementation of the method by the target object’s declared 
type or one of its subclasses, i.e., the class corresponding to the object’s run time type. 

With regard to the Simple overriding rule, the inability to subtype the types of input parameters does not preclude 
the use of overloading for this purpose. The developer, however, must clearly understand that the selection of an 
overloaded method is based on the declared types (rather than the run time types) of the arguments at the point of 
call.  

In accordance with the Simple dispatch rule, method calls are expected to be dispatching.4 Dispatch must account 
for the run time type of the target. Static resolution is regarded as an optimization in those cases where only one 
resolution is possible.  

Note: The initialization rule is not intended to be an obstacle to the creation of “reset” operations that can be called 
by clients to reinitialize on object after it has been constructed, or to the sharing of initialization code with class 
constructors. It suggests only that the client reset operation (which has the class invariant as a part of its 
precondition) and the constructors (which do not) call a non-overriden, internal operation that performs the 
initialization steps common to them all. 

The Simple overriding rule ensures substitutability is not violated at the language level, in terms of method 
declarations. The Subtyping extends this to include testing for substitutability at the behavioral level. Compliance 
with substitutability is necessary if instances of subclasses are to be treated as instances of their superclasses. This is 
not only required by the UML definitions of generalization and inheritance, but a fundamental assumption 
underlying the use of polymorphism and dynamic dispatch. Verification of substitutability for the most critical 
software can be can be shown in one of two ways: 1) by testing each case at each call site (when dynamic dispatch is 
only rarely used) or 2) by conforming to the Subtyping guidelines (more practical for software where dynamic 
dispatch is more widely used). 

                                                           
4 In OOT languages such as Ada95, C++, and Java, binding occurs when the application is built, not at execution time. Only in languages such as 
Smalltalk and Common Lisp is dynamic binding truly dynamic (execution time). In the other languages mentioned dynamic dispatch is no more 
dynamic than a case statement, i.e., all alternatives are statically determined. As a result, the developer should avoid languages such as Smalltalk 
and Lisp for avionics applications. 
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The accidental override rule is intended to guard against errors that could occur in languages that assume subclass 
operations and methods override superclass operations and methods with a matching signature. This rule is 
unnecessary if the language forces the developer to explicitly state that overriding is intended (as in C#). 

The simple dispatch rule is intended to support a model of object-oriented behavior in which (1) each class can be 
completely understood by looking at it in flattened form, and (2) the behavior of any object can be completely 
understood by looking at the flattened definition of its run-time class. The simple dispatch rule guarantees this even 
when the declared type of the object is a superclass of its run-time class (i.e., when polymorphism is used).   

The initialization rule is intended to avoid errors that may arise during the construction of an object when a subclass 
version of a method is called before associated subclass attributes have been initialized and the subclass invariant (if 
any) has been established. In particular, the class invariant is implicitly a part of the precondition and postcondition 
of every client operation, and the class invariant is not guaranteed to be true until the constructor completes. As a 
result, we should not call overridden client operations during object construction. For similar reasons, special care 
should also be taken with respect to calls to client operations in destructors, at other points where the class invariant 
may no longer hold. 

3.3.4.4 Related guidelines 
The guidelines on Overloading and Method Resolution are closely related to those given in this section because both 
overriding and overloading define families of operations whose specifications should be related by principles 
guaranteeing substitutability.  

The guidelines in the section Top Heavy Hierarchy provide metrics to limit the complexity of inheritance 
hierarchies.  

The Subtyping guidelines extend those appearing in this section to include the testing of substitutability at the 
behavioral level. 

3.3.5 Method Extension 
Method Extension supports the implementation of an operation as an extension of an inherited method without 
introducing redundancy, and with the assurance that the resulting postcondition is stronger than or the same as that 
in the superclass. It helps to address issues related to initialization by allowing a subclass constructor to be defined 
as an extension of its parent class constructor, without introducing problems related to the use of dynamic dispatch 
during initialization. 

3.3.5.1 Motivation 
Often we want to provide a subclass version of an operation that extends the functionality provided by the operation 
in its superclass. This extension in functionality must be consistent with substitutability. As a result, the precondition 
for the subclass operation must be weaker than or the same as its precondition in the superclass, and the 
postcondition for the subclass operation must be stronger than or the same as its postcondition in the superclass. 

By implementing an extended operation in terms of an explicit call to the superclass method, preceded or followed 
by additional code, we are able to:  

• avoid repeating the code appearing in the superclass method,  
• provide code before the call to handle the additional cases implied by a weaker precondition5, 
• provide code after the call that adds to its effect, as implied by a stronger postcondition.  

Such explicit calls to superclass methods are by their nature statically bound, and do not involve dynamic dispatch. 
The code that follows the call to the superclass method must not undo its effects in order for the overall 
postcondition to be an extension of that for the superclass. 
                                                           
5 Weakening the precondition makes it valid to call an operation with additional inputs or input combinations.  Consider the operation f(p: 
Integer) pre p > 0.  If we weaken the precondition to give us f(p: Integer) pre p ≥ 0., then the implementation must handle the additional case in 
which p is zero. 
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3.3.5.2 Applicability 
These guidelines are commonly applied to constructors, which begin by calling the constructor for the superclass, 
then initialize all the attributes defined by the class itself. It may also be used to select between competing inherited 
versions of a method (multiple implementation inheritance). 

3.3.5.3 Guidelines 
The following rule for method extension represents the sole exception to the Simple dispatch rule given in 3.3.4.3: 

Method extension rule: When extending the functionality of an inherited method, the subclass method should 
explicitly call the superclass version of the same method. 

Note that the terms method and operation are used in accordance with the UML definitions (see Glossary) since 
some languages blur the distinction. Implementation of method extension in different target languages is described 
in section B.1.2. 

3.3.5.4 Related guidelines 
The guidelines on Method Extension represent the sole exception to the Simple dispatch rule given in section 
3.3.4.3. 

3.3.6 Subtyping 
The Subtyping guidelines extend the Inheritance with Overriding guidelines (which addresses substitutability at a 
language level in terms of operation signatures) in order to verify compliance with substitutability at a behavioral 
level. 

3.3.6.1 Motivation 
DO-178B verification activities may involve testing (at either a unit or system level), the use of formal or informal 
proofs, or other techniques. This section does not prescribe a particular approach. That is left to those sections that 
extend the basic guidelines given in this section. 

Intuition can be misleading when it comes to subtyping relationships. We might, for instance, think (intuitively and 
mathematically) that all squares are rectangles, so Square should be a subclass of Rectangle.  Whether Square should 
be a subclass of Rectangle, however, should not be based on our intuition, or any mathematical definition, but on the 
interfaces we define for these classes. If the interface for Square specializes the interface for Rectangle in 
accordance with substitutability, then it is appropriate for it to be a subclass of Rectangle. Otherwise, it is not [11]. 

By assuming that instances of subclasses must always be substitutable for instances of their superclasses, these 
guidelines restrict the preconditions and postconditions of redefined operations in addition to their signatures. 
Formally, the precondition for a redefined operation must be weaker than or the same as the precondition of the 
operation it redefines. Conversely, the postcondition for a redefined operation must be stronger than or the same as 
the postcondition of the operation it redefines. 

In terms of the client interface, this means that a subclass is compatible with a superclass if we: 

(1) expect no more of clients than we do in the superclass (the preconditions of overridden operations are weaker or 
the same), and  

(2) deliver at least as much (the postconditions of overridden operations are stronger or the same). 

The same rules apply to the relationship between methods and the operations they implement: the precondition for 
an implementing method must be weaker than or the same as the precondition of the operation its implements, and 
the postcondition for an implementing method must be stronger than or the same as the postcondition of the 
operation it implements. 
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Note that in real time systems, the deadline by which a method must complete may be treated as part of the post- 
conditions. If it is important to know up-front in system development that timing constraints are met, then every 
implementation must be required to meet its respective timing bound. Otherwise, when complete closure exists, the 
system as a whole must be tested to insure it meets its required bounds. In a broader sense, post-conditions can 
address other quality of service (QOS) issues in addition to timing constraints. 

3.3.6.2 Applicability 
These guidelines apply when instances of different subclasses may be assigned (polymorphically) to a given variable 
or parameter. 

3.3.6.3 Guidelines 
The guidelines in this section extend those on Inheritance with Overriding in section 3.3.4 to include the following 
additional rules. 

1. Minimum compatibility rule:  

At a minimum, superclass/subclass compatibility should be verified with respect to all classes involved in the 
polymorphic assignment of different subclass instances to the same variable or parameter during the execution of 
the system. 

2. Substitutability compliance rule:  

Any approach used to verify superclass/subclass compatibility should be consistent with the principles of behavioral 
subtyping defined by Liskov and Wing [7]. 

As specified by UML, the semantics of subclassing implies superclass/subclass compatibility in accordance with 
substitutability. In practice we must, at a minimum, ensure that we verify this in all cases where instances of 
different subclasses may be associated with the same variable or parameter during the execution of the system under 
test. 

Additional guidelines are defined by a number of sections that extend these basic guidelines. These guidelines vary 
with the approach used to verify superclass/subclass compatibility. The standard for superclass/subclass 
compatibility, however, is the same: compliance with the principles of behavioral subtyping defined by [7]. 

3.3.6.4 Related guidelines 
Related guidelines include those for Formal Subtyping. 

3.3.7 Formal Subtyping 
The Formal Subtyping guidelines apply the principles of Design by Contract [17] with formally defined 
pre/postconditions and invariants. By requiring formal specification of the classifiers to be checked in a 
precondition/postcondition/invariant style, these assertions can then be used to either generate the needed test cases, 
or as the basis for analysis and formal proofs. Providing a complete and precise specification of the interface also 
helps prevent errors by making the contract between the clients and implementers of a class explicit, makes it easier 
to enforce rules for substitutability, and supports the traceability of high level requirements to low level 
requirements.  

3.3.7.1 Motivation 
The signature of an operation, which includes its name, parameter types, result types (if any), and errors (if any),  
provides clues to the operation’s behavior but, by itself is insufficient. Comments that describe the purpose of the 
operation and the relationships between inputs, outputs, and errors are also helpful. But most comments are 
informal, cannot be processed by tools, and lack the precision to serve as a basis for analysis, proofs, or the 
development of test cases.   
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As a result, it is generally recommended that class interfaces be specified in a precondition/postcondition/invariant 
style (an approach referred to by Meyer as ‘Design by Contract’). Expressing low level requirements in this way 
helps prevent errors by making the semantics of the interface clear to developers before client code is written.  Such 
specifications can also be processed by tools and used as a basis for analysis, formal proofs, and the generation of 
test cases. This, in turn, supports reverification and regression testing in response to changes to the class introduced 
in order to comply with other guidelines.  

It is also useful to specify global data access and information flow relations as part of an operation’s contract. While 
these are not as strong as the recommended precondition/postcondition/invariant style, they can be efficiently 
checked and also used as the basis for analysis, formal proofs, and the generation of test cases.   

3.3.7.2 Applicability 
These guidelines apply when instances of different subclasses may be assigned (polymorphically) to a given variable 
or parameter.  

3.3.7.3 Guidelines 
The guidelines in this section extend those on Subtyping (section 3.3.6) to include the following rules: 

Explicit pre/postcondition/invariant rule: To ensure that all classes define their interfaces as contracts, all 
pre/postconditions and invariants for operations and methods must be explicitly stated and all errors returned by 
them must be specified. Unless the program is to be subjected to automated format analysis, this includes 
pre/postconditions, invariants, and error lists that are considered to be trivial (e.g., conditions whose value is true, 
and error lists that are empty). 

Frame condition  rule:  Unless the language provides a separate mechanism for indicating which variables may and 
may not change, ideally each postcondition should also include a ‘frame condition’ which indicates which variables 
are guaranteed not to change as a result of executing the operation/method. 

Software developers tend to rely on testing to verify substitutability. While associated test cases may be developed 
at either the system or the unit level, the development of test cases alone, however, has its limitations.  Test cases are 
no substitute for a complete, precise specification of behavior, which is needed by the clients of a class, and by 
developers seeking to subclass an existing class. 

A complete and precise specification of behavior is also needed in order to develop the test cases for a class and to 
provide traceability from high level to low level requirements. As a result, it is generally recommended that class 
interfaces be specified in a precondition/ postcondition/invariant style (an approach referred to by Meyer as ‘Design 
by Contract’). This style provides the basis to make compliance with substitutability easier and helps avoid errors by 
making contracts between clients and classes explicit. In addition, explicit statement of pre/postcondition and 
invariants can be used to generate unit level test cases, or can be used as the basis for formal analysis and proofs. 

Realistic implementation of these guidelines requires the use of an unambiguous programming language and 
application of static analysis techniques. 

3.3.7.4 Related guidelines 
Related guidelines include those for Unit Level Testing of Substitutability, System Level Testing of Substitutability 
Using Assertions, and System Level Testing of Substitutability Using Specialized Test Cases. 

3.3.8 Unit Level Testing of Substitutability 
The guidelines in this section check for superclass/subclass compatibility by requiring that all unit level test cases 
associated with a class are inherited by its subclasses. These guidelines help address the same issues as those defined 
for Subtyping. 
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3.3.8.1 Motivation 
The verification of superclass/subclass compatibility is straightforward if we develop a set of unit level test cases for 
all classes identified by the minimum compatibility rule (Subtyping).  

Subtype compatibility then means that all superclass test cases should run successfully against all subclass instances 
(superclass test cases are inherited by subclasses) provided that all such tests satisfy the method precondition(s) 
involved, taking account of any dynamic dispatch involved in evaluating the precondition. Subclasses also often 
extend this set of superclass test cases to include their own more specialized tests (the subclass test set is a superset 
of the superclass test set). 

3.3.8.2 Applicability 
These guidelines apply when concerns exist about compatibility between specific classes, and test cases are written 
to directly test these classes. Typically, this applies to low-level requirements. These guidelines should be applied to 
situations where instances of different subclasses may be assigned at run-time to a variable or parameter whose 
declared type is an associated superclass (polymorphic assignment).   

In contrast to other Subtyping guidelines, the guidelines in this section are most effective when the development 
organization relies on a combination of system level and class level testing, rather than on system level testing alone. 
Separate sections address System Level Testing for Substitutability (see the guidelines for System Level Testing of 
Substitutability Using Assertions and System Level Testing of Substitutability Using Specialized Test Cases). 

3.3.8.3 Guidelines 
The guidelines in this section extend those on Subtyping (section 3.3.6) to include the following rules which apply to 
all classes identified by the minimum compatibility rule: 

Inherited test case rule: Every test case appearing in the set of test cases associated with a class should appear in 
the set of test cases associated with each of its subclasses. 

Separate context rule: If dynamic dispatch is involved in the execution of a method, the method should be 
separately tested in the context of every concrete class in which it appears, irrespective of whether it is defined by 
the class or inherited by it, provided that all such tests take account of the method precondition(s) involved, taking 
account of any dynamic binding involved in evaluating the precondition. An exception is made for methods that are 
guaranteed not to directly or indirectly invoke a method that is dynamically bound with respect to the current object, 
for example, simple get and set methods that only assign a value to, or return the value of an attribute or 
association. Such methods need only be tested once, in the context of the defining class. 

These rules are intended to imply that all inherited test cases (other than those for simple gets and sets) should be run 
against instances of all concrete subclasses. As a result, changes to the code inherited by a class that affect its 
flattened form should result in its retest precisely as if the class itself had been edited. 

The inherited test case rule is intended to apply to all test cases, including those introduced solely to meet structural 
coverage criteria. It could be argued that such tests should only be inherited when the tested code is also inherited. It, 
however, seems simpler and safer to recommend that they be inherited in all cases, since they should pass when run 
against the subclass.   

When applying the inherited test case rule, if the subclass invariant is stronger than that of its superclass, then a 
check of this invariant (rather than the weaker superclass invariant) should be a part of the pass/fail check of each 
inherited test case. In this way, the “missing override” issue is resolved. 

The separate context rule is intended to ensure that superclass methods are separately tested in the context of each 
subclass. This recommendation addresses the fact that even when a given method is inherited without change, the 
methods called by it may be overridden in the subclass, leading to a different behavior. An exception is made for 
methods that are guaranteed not to directly or indirectly invoke a method that is dynamically bound with respect to 
the current object, for example simple get and set methods that reference only data, and do not call other methods. A 
more complete impact analysis could be used to determine whether other inherited methods need to be retested in 
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the context of each subclass. The guidelines in this section, however, assume it is simpler and easier to rerun such 
tests than to perform such an analysis. 

Note that testing in accordance with these guidelines will ensure that all dispatch table entries are exercised at some 
call site, equivalent to providing MC/DC of the case statement assumed to be associated with the dispatch routine.  

Although not required to use these guidelines, it is recommended that class interfaces be specified in a pre/post- 
condition style prior to writing test cases (an approach referred to by Meyer [17] as ‘Design by Contract’). 
Expressing low-level requirements in this way helps prevent errors by making the semantics of the interface clear to 
developers before client code is written. Pre- and post- conditions may be specified in a variety of ways, e.g. as 
informal comments, as formal annotations, in table form, in terms of a state diagram, or in terms of executable run 
time checks used by a test driver.  Such pre- and post- conditions may also be useful as input to test case generation 
tools.  

Although these guidelines typically apply to the testing of low-level classes and requirements, they can be used at a 
high level if the classes and subclasses to be tested for compatibility represent a software system or a subsystem. For 
example, given a class System with subclasses SystemA and SystemB, SystemA and SystemB should inherit the test 
cases defined for System (which are based on the high level requirements common to both of them). 

3.3.8.4 Related guidelines 
Related guidelines include those for System Level Testing of Substitutability Using Assertions, System Level Testing 
of Substitutability Using Specialized Test Cases, and Percolation [11, pp. 882-896]. 

3.3.9 System Level Testing of Substitutability Using Assertions 
The guidelines for System Level Testing of Substitutability Using Assertions check for superclass/subclass 
compatibility by instrumenting a version of the software with assertion checks related to substitutability. Existing 
system level test cases are then run (without change) against this version (to test for substitutability violations), then 
run a second time against the uninstrumented target version of the software. These guidelines help address the same 
issues as those for Subtyping. 

3.3.9.1 Motivation 
Some projects prefer to focus exclusively on system level, requirements based testing, without developing any unit 
level/class level test cases. Use of the Unit Level Testing of Substitutability is clearly in conflict with this approach. 
A number of programming languages and tools, however, support the selective use of pre- and post- condition and 
invariant declarations as run time checks. One particularly simple way to test for substitutability at a system level is 
to take advantage of the use of these checks to verify superclass/subclass compatibility for classes identified by the 
minimum compatibility rule (Subtyping). This does not involve any substantial changes to existing system level, 
requirements based tests. It does, however, require that these tests be run against both an instrumented and 
uninstrumented version of the software. 

3.3.9.2 Applicability 
These guidelines apply when concerns exist about the substitutability of various subclasses for one another at run-
time and requirements-based test cases are written to test these configurations. Typically, the test cases are based on 
high-level requirements. 

Although these guidelines typically apply to the testing of high-level requirements at a system level, they can also be 
applied at a subsystem level, in terms of low-level or derived requirements. These guidelines differ from those for 
the Unit Level Testing of Substitutability  in that test cases are written against some entity (e.g., system or 
subsystem) that contains instances of the classes we wish to test for compatibility, and not directly against these 
classes. 

Use of these guidelines is straightforward if a project already instruments the code to measure structural coverage, or 
is already defining interfaces as contracts [17][18, Design by Contract]. These, though, are not prerequisites.   
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The guidelines, however, do assume that system level test cases have been developed (or will be developed) to test 
for all system configurations in which instances of various subclasses may be substituted for one another at run time. 
(Development of these test cases should be driven by high-level requirements related to substitutability). 
Substitutability related assertions require language or tool  support.  

As with the instrumentation of code for any reason (e.g. measurement of structural coverage), care should be taken 
to account for the overhead associated with the run time checks involved, e.g., timing may be affected. It is also 
necessary to consider what should be done if any of the conditions (pre-, post-, and invariant) are violated, i.e., 
handling of exceptions needs to be accounted for. 

3.3.9.3 Guidelines 
The guidelines in this section extend those for Subtyping (section 3.3.6). The following rules describe the type of 
assertion checks required to test for superclass/subclass compatibility in accordance with substitutability. Such 
checks should be performed on all classes identified by the minimum compatibility rule. 

Precondition assertion rule: An assertion to check the operation’s precondition should appear before the body of 
all methods that implement a public operation. In accordance with substitutability, this precondition may only be 
weakened or the same in overridden versions of the operation. 

Postcondition assertion rule: An assertion to check the operation’s postcondition should appear after the body of 
all methods that implement a public operation. In accordance with substitutability, this postcondition may only be 
strengthened or the same in overridden versions of the operation. 

Invariant assertion rule: An assertion to check the operation’s invariant should be a part of the precondition check 
and the postcondition check of all public operations. In accordance with substitutability, the invariant may only be 
strengthened or the same in all subclasses of a class. 

Instrumented/uninstrumented testing rule: A test case run against an instrumented version of the code should be 
considered to pass only if all assertion checks associated with substitutability hold during its execution. A test case 
run against an uninstrumented version of the code should be considered to pass only if it produces the same result 
that it did when run against an instrumented version of the same code. 

The first three rules echo the basic principles of substitutability. Some languages (such as Eiffel [17][18]) enforce 
these rules directly and provide facilities for enabling and disabling associated run time checks, as required for 
instrumented/ uninstrumented testing.  In other languages (such as C++ and Java), it is possible to use language level 
assertions to achieve the same effect, although the substitutability relations between preconditions, postconditions 
and invariants must be enforced by code reviews. A subset of the language that is amemable to use of 
substitutability and that will help static analysis should strongly be considered. 

A simple way in which to ensure that these relations hold is to require that: 
• new preconditions be of the form ‘overridden_ pre or some _condition’ 
• new postconditions be of the form ‘overridden_post and some_condition’ 
• new subclass invariants be of the form ‘superclass_invariant and some_condition’. 

Otherwise the precondition, postcondition or invariant must be the same. 

Tool support is also available from a number of sources. Usually this includes enforcement of the first three rules, 
and a facility for enabling and disabling the use of assertions as run time checks (analogous to Eiffel). Assertions 
may be written in a number of notations, ranging from simple boolean expressions in the target language to first 
order logic [20], with quantification. 

Assertions may also be introduced at an analysis or design level and mapped down to run time checks in the target 
language. Many tools that favor this approach, however, rely on proofs for verification, rather than the introduction 
of run time checks. 

Binder discusses the instrumentation of the code with substitutability run time assertion checks in detail (with 
examples and sample code) in his Percolation pattern [11, pp. 882-896].  
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Not all assertion checks should necessarily be removed in the uninstrumented version of the code.  In accordance 
with the advice of Liskov and Guttag, “it is usually worthwhile to retain at least the inexpensive checks” [8, p. 251]. 

3.3.9.4 Related guidelines 
Related guidelines include those defined for Percolation [11, pp. 882-896], Unit Level Testing of Substitutability, 
and System Level Testing of Substitutability Using Specialized Test Cases. 

3.3.10 System Level Testing of Substitutability Using Specialized Test Cases 
The guidelines in this section check for superclass/subclass compatibility by developing system level test cases in a 
manner that first ignores compliance with substitutability and then introduces specialized versions of existing system 
level test cases to explicitly test for substitutability compliance. These guidelines help address the same issues as the 
those for Subtyping. 

3.3.10.1 Motivation 
Some projects prefer to focus exclusively on system level, requirements-based testing, without developing any unit 
level /class level test cases. Use of the Unit Level Testing of Substitutability  is clearly in conflict with this approach.  
There are, however, ways to test for substitutability at a system level. One approach involves the development of 
specialized system level tests for this purpose. This has the advantage of avoiding instrumentation (guidelines for 
System Level Testing of Substitutability Using Assertions) although it typically requires that test cases be developed 
with this approach in mind. 

3.3.10.2 Applicability 
These guidelines apply when concerns exist about substitutability of various subclasses for one another at run-time 
and requirements-based test cases are written to test these configurations. Typically, the test cases are based on high-
level requirements. 

Although these guidelines typically apply to the testing of high-level requirements at a system level, they can also be 
applied at a subsystem level, in terms of low-level and derived requirements. They differs from the guidelines for 
Unit Level Testing of Substitutability in that test cases are written against some entity (e.g., system or subsystem) 
that contains instances of the classes we wish to test for compatibility, and not directly against these classes. 

Use of these guidelines is straightforward if test cases have not yet been developed, or if the current set of test cases 
ignores substitutability. 

3.3.10.3 Guidelines 
The guidelines in this section extend those for Subtyping (section 3.3.6). The following rules relate to the process 
used to develop system level test cases to test for substitutability [3, section 5]. They assume that, with suitable 
language restrictions, dynamic dispatch is semantically equivalent to the use of hand-coded dispatch methods 
containing case statements or compound if statements. The rules begin with conformance to  coverage criteria based 
on inlined calls to a case statement with MC/DC testing for Level A systems. They culminate in conformance to 
coverage criteria that guarantees substitutability between subtypes and supertypes.  

Generalized test case rule: First construct a set of system level test cases to meet the required DO-178B coverage 
criteria while considering only the declared classes of objects and object references. The run time classes of 
objects and dynamic dispatch should be ignored other than to mark test cases that include dispatching calls as 
polymorphic. 

Specialized test case rule: Next create a set of specialized test cases for each polymorphic test case that are 
explicitly designed to test for substitutability. The set of test cases generated from a given polymorphic test case 
should be designed to drive dynamic dispatch down different paths with regard to the selection of subclass 
methods. The initial state and resulting state associated with each specialized test case should be compatible (in 
terms of substitutability) with the more general test case from which it was derived. 
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Although the steps to comply with the above-listed rules are the same, it is also possible by complying with the 
following rules to develop a set of test cases that meet any of a number of different substitutability-related coverage 
criteria. 

Min Substitutability coverage rule: By this test case coverage criteria, the full set of specialized test cases must 
exercise dynamic dispatch to subclass methods to the extent required to meet the structural coverage criteria of 
DO-178B. 

Max Substitutability coverage rule: By this test case coverage criteria, the set of specialized test cases derived from 
each polymorphic test case must exercise all reachable subclass methods at each point of call involving dynamic 
dispatch. 

Mid Substitutability coverage rule: By this test case coverage criteria, the full set of specialized test cases must 
meet the criteria set by the Min Substitutability coverage rule. Additional specialized test cases, however, are 
introduced to test specifically for the types of problems raised by issues 20, 21, 22, 26, and 40 identified in Volume 
2, Appendix B of this Handbook. 

Compliance with DO-178B objectives requires conformance to the Min Substitutability coverage rule. This rule is 
designed to rely on DO-178B to set the criteria for test case coverage. Rather than require additional test cases to test 
for substitutability, it takes advantage of the process for test case generation to add substitutability-related 
compatibility checks to the test cases created (“The initial state and resulting state associated with each specialized 
test case should be compatible (in terms of substitutability) with the more general test case from which it was 
derived.” [7]).  This is not as rigorous as the process of the Unit Level Testing of Substitutability, but it does make 
the most of the test cases already required by DO-178B. 

The Max Substitutability coverage rule matches the degree of rigor offered by the Unit Level Testing of 
Substitutability, and exceeds it. It is most appropriate when the DO-178B software level is high (e.g. level A) and 
the number of calls involving dynamic dispatch is small. If run-time substitution of different subclass instances is 
commonplace (Subtyping, minimum compatibility rule), exhaustive testing of all subclass methods in the context of 
every system level test case is impractical. Typically, however, the most safety critical applications are also the most 
static, making this level of substitutability test coverage acceptable in many cases. 

The Mid Substitutability coverage rule attempts to strike a balance between the previous coverage criteria by 
requiring compliance with the Min Substitutability coverage rule, but adding rigor through the introduction of 
additional test cases targeted specifically to the types of problems raised 20, 21, 22, 26, and 40 identified in Volume 
2, Appendix B of this Handbook. Additionally, explicit robustness test cases may need to be developed but this is 
not unique to substitutability-related testing [19]. 

Tools are often used to verify structural coverage criteria. Structural coverage analysis tools for OO languages 
should measure coverage for each polymorphic reference and each resolution for each set of identical polymorphic 
references. When a tool does not have the capability to measure coverage in this way, then a process will need to be 
performed to augment the tools analysis capabilities to satisfy structural coverage objectives. The sets of rules in this 
section may be used to augment a tool’s capability to meet DO-178B structural coverage objectives. A clarification 
of the coverage requirements for class structure versus the coverage of method internals within the class structure is 
found in sections 3.10.8 and 3.10.9. 

3.3.10.4 Related guidelines 
Related guidelines include those for Unit Level Testing of Substitutability, System Level Testing of Substitutability 
Using Assertions, and Percolation [11, pp. 882-896]. 

3.3.11 Class Coupling 
The guidelines in this section limit control flow and data flow between clients and classes and between classes and 
subclasses to facilitate future changes and to simplify analysis.  
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3.3.11.1 Motivation 
One of the fundamental principles of object-oriented development is data abstraction. The goal is to hide the details 
of the data representation behind an abstract class interface. This permits the data representation to change without 
affecting other classes. It also simplifies the enforcement of class invariants, and permits control over concurrent 
access to shared data. Extending this principle, we can use abstract class interfaces to control access to hardware 
resources as well as data. 

For example, consider the implementation of a class for a set. The selection of an optimum data representation (list, 
tree, hash table, etc.) will vary depending on the mix of operations required by the application. Typical strategies 
involve a choice between a sorted and a hashed representation, and a choice between fast insert/delete and fast 
lookup. The use of data abstraction makes it easy to change this representation with no significant change to client 
code.  

The same situation arises with respect to the abstraction of other resources. For example, a number of different 
hardware devices may perform a given function, or a number of different caching policies may be associated with 
access to a given file system, or a number of different ways may exist to represent the elements of a given display, 
with a number of different strategies for drawing/redrawing them. In all these cases, we want to publish a single 
interface but support a number of different underlying implementations and data representations. 

In terms of DO-178B, data abstraction supports partitioning [1, p. 9, section 2.3.1] by permitting the developer to 
restrict access to the resources controlled by the class. By limiting the degree of control and data coupling between 
software components, we also simplify analysis [1, p. 74, objective 8] and make it easier to verify key system 
invariants maintained by a given class [1, p. 70, objectives 1 and 4]. 

To be effective, the interface should provide a true abstraction of the data and other resources controlled by the 
class, rather than simple accessors (get and set operations) for each attribute or hardware register. Any invariants 
associated with the class should be established by the class constructor, and maintained by every publicly accessible 
operation. Access restrictions associated with the class interface permit a proof of the invariant to be local to the 
class, rather than global to the system and different for each system in which the class appears. 

These principles apply not only to interfaces provided by the class to clients but to interfaces between superclasses 
and subclasses. In particular, it should be possible for the developer to define the interface between a class and its 
subclasses in the same manner as the interface between the class and its clients. Both can be considered ‘contracts’, 
only with different parties. The interface between client and class is concerned with how the class will be used. The 
interface between superclass and subclass is concerned with how the class definition and implementation can be 
extended. Both can be defined formally (in terms of pre- and post- conditions) when desired. 

3.3.11.2 Applicability 
These guidelines apply when control and data coupling between classes is a concern in an object-oriented system. 
Access to the attributes of a class is provided by public and protected operations, which can be inlined to avoid the 
overhead associated with a call, producing code comparable to that for direct access. When performance is critical, 
but the target compiler does not support inlining or does not perform inlining efficiently, use of these guidelines may 
not be appropriate.  

3.3.11.3 Guidelines 
The following rules address the basic issues associated with Class Coupling: 

Client data abstraction rule: 

- Clients should access the data representation of the class only through its public operations.  

- All attributes should be hidden (private or protected), and all strategies associated with the choice of data 
representation should be abstracted by its set of public operations.  

- All hardware registers should be hidden (private or protected), and all strategies associated with the use of a 
particular hardware device should be abstracted by its set of public operations. 
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Invariant rule: The invariant for the class should be: 

- an implicit or explicit part of the postcondition of every class constructor,  

- an implicit or explicit part of the precondition of the class destructor (if any),  

- an implicit or explicit part of the precondition and postcondition of every other publicly accessible operation.  

As a result, clients should be able to influence the value of the invariant only through execution of these operations. 
Private and protected operations are exempted in the invariant rule since the invariant need not hold at all times, but 
only at points where it is externally observable.  

These guidelines may be extended to deal with the coupling between classes and subclasses by also adopting the 
following rule:  

Subclass data abstraction rule: 

- A subclass should access the data representation of its superclass only through the superclass’ public and 
protected operations.  

- All attributes should be hidden (private), and all strategies associated with the choice of data representation 
should be abstracted by its set of public and protected operations.  

- All hardware registers should be hidden (private), and all strategies associated with the use of a particular 
hardware device should be abstracted by its set of public and protected operations. 

- The class invariant should also be an implicit or explicit part of the precondition and postcondition of each 
protected method of a class, and part of the postcondition of every protected constructor. 

To be most effective, both the client and subclass interfaces should provide a true abstraction of the data and other 
resources controlled by the class, rather than simple accessors (get and set operations) for each attribute or hardware 
register. 

3.3.12 Deep Hierarchy 
The guidelines in this section address issues that can occur when the complexity of class hierarchies is very deep. 

3.3.12.1 Motivation 
Most class hierarchies have a characteristic depth of between three and six, irrespective of the application. Class 
hierarchies that are either too deep or too shallow can cause problems. Dynamic dispatch can introduce problems 
related to initialization, especially with regard to deep class hierarchies. Top-heavy multiple inheritance and deep 
hierarchies also tend to be error-prone, even when they conform to good design practice. The wrong variable type, 
variable, or method may be inherited, for example, due to confusion about a multiple inheritance structure. Binder 
refers to this as “spaghetti inheritance” [11]. 

3.3.12.2 Applicability 
These guidelines apply when the complexity of the class hierarchy is a concern. 
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3.3.12.3 Guidelines 
The following rule addresses the issues associated with Deep Hierarchies: 

Six deep rule: Any class hierarchy with a depth greater than six warrants a careful review that specifically 
addresses the above issues and weighs this against the need to isolate various proposed changes. When extending 
an existing framework, depth should be measured from the point at which the framework is first subclassed. When 
developing an application specific class hierarchy, depth should be measured from the root. In languages in which 
all classes implicitly inherit from a common root class, this class should not be included in the count. 

A class hierarchy that successfully passes an inspection should be marked so as to avoid repeated review with 
respect to the same issue. 

A certain amount of variation in the threshold (e.g., plus or minus two) may also be expected based on the results of 
reviews using the six deep threshold. Deep hierarchies may also be more of a problem with respect to 
implementation inheritance than interface inheritance. The use of multiple inheritance can also be an important 
factor in adjusting the threshold. 

This rule is based on the metrics for Class hierarchy nesting level appearing in [9, pp. 61-64]. Note that this rule 
does not, in anyway, imply that class hierarchies with a depth of six or less do not require careful review. 

3.3.12.4 Related Guidelines 
Related guidelines include those for Inheritance with Overriding, Multiple Interface Inheritance, and Multiple 
Implementation Inheritance. 
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3.4 Multiple Inheritance 

3.4.1 Purpose 
This section provides guidelines regarding safe implementation and use of multiple inheritance in projects that use 
object-oriented (OO) technology.   

3.4.2 Background  
Single inheritance, overriding, subtyping, and dynamic dispatch are described in Section 3.3. Multiple inheritance 
permits a class to have more than one superclass. It may involve either interface inheritance or implementation 
inheritance, or some combination of these. Interface inheritance involves the inheritance of only interface elements 
(such as operation specifications and constraints), while implementation inheritance involves the inheritance of 
implementation elements (such as methods, attributes, and references to other objects).  

Multiple inheritance may lead to name clashes involving elements inherited from different superclasses that have the 
same signature. Some languages support renaming as a means of resolving such name clashes. Eiffel is particularly 
elegant in dealing with this [18]. Most other languages either require more complicated workarounds [22, section 
12.8] or the editing of the superclass definitions to rename inherited elements. 

Most issues arise with respect to multiple implementation inheritance because it is difficult to implement well, 
because associated errors have run-time consequences, and because the inherited elements reference one another and 
may interact in subtle ways, increasing overall complexity and the potential for error. 

Because delegation is considered an effective substitute for multiple implementation inheritance, many more recent 
languages (such as Java and C#) only support multiple inheritance involving interface specifications. The Aerospace 
Vehicle Systems Institute (AVSI) Guide [21] also recommends the use of delegation rather than multiple 
implementation inheritance for systems certified to levels A, B, and C. 

A number of issues arise when using multiple inheritance that may make compliance with DO-178B difficult. 
Section 3.4 documents the issues, related DO-178B sections and objectives, and applicable guidelines.  

In general, these “guidelines” do not represent new “guidance”, but an interpretation of existing guidance (DO-
178B) with respect to the use of particular OO features. The “rules” associated with these guidelines are also rules 
only in the sense that they must be followed in order to adopt the given approach.  Often there are also alternative 
approaches that can be followed in order to address the same issues and still comply with DO-178B. 

3.4.3 Overall approach  
This section is intended to provide an approach for addressing DO-178B objectives when using OO features related 
to multiple inheritance. In this regard, multiple inheritance is treated as an extension of single inheritance and, as a 
result, all guidelines related to the use of single inheritance and dynamic dispatch also apply here. Issues related to 
multiple inheritance are listed in volume 2.  

Guidelines that attempt to resolve these issues appear in sections 3.4.5 through 3.4.8. Each of these sections should 
be understood to provide one (of possibly many) approaches that assist in compliance to DO-178B objectives. 

The overall collection of guidelines is open-ended. As a result, new approaches and new guidelines may be added 
that address the same issues as existing approaches, under different circumstances.   

A sharp distinction is drawn between the use of interface and implementation inheritance. The guidelines for 
Multiple Interface Inheritance address the simpler case, in which we are concerned only with inherited operation 
specifications (that do not reference one another).   

The guidelines for Multiple Implementation Inheritance deal with the more difficult case involving the inheritance 
of code and data. Although use of these guidelines helps us deal with the issues raised with respect to ambiguity and 
complexity, delegation is still considered preferable to the use of multiple implementation inheritance for most 
systems (as recommended by the AVSI Guide [21]).  
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The guidelines for the Combination of Distinct Abstractions provide an alternative to those for Multiple 
Implementation Inheritance. They forbid the use of repeated inheritance in order to eliminate related sources of 
ambiguity. 

The guidelines for Mixed Multiple Inheritance address the case in which we have a mix of interface and 
implementation inheritance. 

3.4.4 Multiple Interface Inheritance 
Multiple interface inheritance permits the categorization of entities in terms of their interfaces, where each entity 
may appear in more than one category. These guidelines extend those for single inheritance and dynamic dispatch to 
address multiple interface inheritance. When applying the Subtyping guidelines, this means that a subclass with 
more than one superclass inherits the test cases defined by all its superclasses.  

3.4.4.1 Motivation 
In the real world, objects are often classified in more than one way. Multiple interface inheritance allows us to 
model this without introducing redundancy (and without the complications associated with multiple implementation 
inheritance).    

3.4.4.2 Applicability 
Multiple interface inheritance involves two or more superinterfaces, each of which contributes features (compile-
time constants and operations) to a single subinterface. Each super-interface may, in turn, itself inherit from other 
interfaces, either singly or multiply. The resulting inheritance hierarchy forms a directed acyclic graph that permits 
the definition of common ancestors, and the inheritance of the same feature along more than one path (repeated 
inheritance). Features may also be redefined, potentially resulting in different definitions of the same feature along 
different paths. Appendix B.2 illustrates the following issues with multiple interface inheritance:  

• Repeated inheritance, 
• Redefinition along separate paths, 
• Independently defined operations with same signature 

3.4.4.3 Guidelines 
The guidelines in this section extend those for Inheritance with Overriding (section 3.3.4) to include the following 
rules that addresses the three issues listed above:  

1. Repeated interface inheritance rule:  

When the same operation declaration is inherited by an interface via more than one path through the interface 
hierarchy without redeclaration or renaming, this should result in a single operation in the subinterface. 

2. Interface redefinition rule:  

When a subinterface inherits different definitions of the same operation (as a result of redefinition along separate 
paths), the definitions must be combined by explicitly defining an operation in the subinterface that follows the 
Simple overriding rule (section 3.3.4.3) with respect to each parent interface.  

3. Independent interface definition rule:  

When more than one parent independently defines an operation with the same signature, the user must explicitly 
decide whether they represent the same operation or whether this represents an error. Such decisions should be 
recorded as explicit annotations to the source code.  If the operations are not intended to be the same, one of them 
should be renamed.  If the operations are intended to be the same, any preconditions and postconditions should 
also be the same. 
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4. Compile time constant rule: 

All of the above rules apply to compile time constants as well as operations. Constants whose value involves run-
time computation should not be permitted in interfaces. 

The rationale for the Repeated interface inheritance rule: is that cases involving the sharing of operations are 
common while cases that demand replication are not (Appendix B.2). Sharing is also supported by many languages, 
whereas replication is not. Therefore sharing is defined to be the normal, expected behavior and additional work is 
needed to support replication in those rare cases in which it is required. 

The Interface redefinition rule: is derived from the guidelines for behavioral subtyping [7] that inspired the Simple 
overriding rule: (section 3.3.4.3). The user is required to define the operation representing the combination of the 
inherited definitions in order to make its specification explicit even when the language does not require it. The intent 
here is that clients of the sub-interface be able to directly see the result of combining the inherited definitions. 

The Independent interface definition rule: requires the user to always explicitly decide when two independently 
defined operations with the same signature are intended to represent the same operation and when they are not. The 
intent here is to avoid errors resulting from the accidental matching of operation signatures.  

The Compile time constant rule: specifies that compile time constants be treated in the same manner as operations 
with respect to the previous cases. It applies only to constants with an initial value that can be computed at 
compilation time. Constants whose value is computed at run-time require the generation of code to perform the 
computation and assignment. This, in turn, conflicts with the fundamental definition of an interface, which is not 
permitted to define either the code or the data. 

Languages specific guidelines are provided in Appendix B.2. In general, it is only necessary to enforce (e.g., by 
means of design and code inspections) those guidelines that the language does not enforce itself.  

3.4.4.4 Related guidelines 
The guidelines in this section are related to those for Subtyping. 

3.4.5 Multiple Implementation Inheritance  
Multiple implementation inheritance supports the construction of a class implementation in terms of the 
implementations of other existing classes. These guidelines extend those for single inheritance and dynamic dispatch 
to address multiple implementation inheritance. When applying the guidelines for Subtyping, this means that a 
subclass with more than one superclass inherits the test cases defined by all its superclasses. 

3.4.5.1 Motivation 
Multiple implementation inheritance supports maximum reuse of code. 

3.4.5.2 Applicability 
A given class C is implemented by inheriting the methods and attributes of two or more superclasses S1, S2. 

3.4.5.3 Guidelines 
The guidelines in this section extend those for Inheritance with Overriding (section 3.3.4) to address the basic issues 
raised by the multiple inheritance of code and data in a manner consistent with the multiple inheritance of interface 
specifications: 
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1. Repeated implementation inheritance rule:  

When the same feature (method or attribute) is inherited by a class via more than one path through the interface 
hierarchy, this should result in a single feature in the subclass.  

2. Implementation redefinition rule:  

When a subclass inherits different definitions of the same method (as a result of redefinition along separate paths), 
the definitions must be combined by explicitly defining a method in the subclass that follows the Simple overriding 
rule: (section 3.3.4.3) with respect to each parent class. 

3. Independent implementation definition rule:  

When more than one parent independently defines a method with the same signature, the user must explicitly 
decide whether they represent the same method or whether this represents an error. If they are intended to be 
different, renaming should be used to distinguish them. Otherwise, the definitions must be combined by explicitly 
defining a method in the subclass that follows the Simple overriding rule: (section 3.3.4.3) with respect to each 
parent class. 

As in the guidelines on Inheritance with Overriding, it is recommended that decisions related to the Independent 
implementation definition rule: be recorded as explicit annotations to the source code. 

Languages specific guidelines for C++ are provided in Appendix B.2. In general, it is only necessary to enforce (e.g. 
by means of design and code inspections) those guidelines that the language does not enforce itself. 

3.4.5.4 Related guidelines 
The guidelines in this section are related to those for Subtyping. 

3.4.6 Mixed Multiple Inheritance  
Multiple inheritance may involve only interface specifications, may involve only implementations or may involve 
some combination of these. The guidelines in this section address the issues associated with the combination of 
interface and implementation inheritance (mixed multiple inheritance). 

3.4.6.1 Motivation 
Often we want to define a class that implements one of more interfaces while building on the implementation 
provided by a second class. This can be accomplished in a number of ways. In situations where the resulting class is 
logically a subtype of the other classes, inheritance is a natural choice. This typically works well as long as all the 
superclasses are interfaces, save one. 

In the more general case, involving an arbitrary combination of interfaces, abstract classes, and concrete classes, the 
problems associated with multiple implementation inheritance may also arise. 

3.4.6.2 Applicability 
These guidelines apply when a class has at least one parent class that is an interface and at least one parent class that 
is not. 

3.4.6.3 Guidelines 
Both the guidelines for Inheritance with Overriding and Multiple Interface Inheritance apply here. If more than one 
superclass provides an implementation, the guidelines on Multiple Implementation Inheritance also apply. 

Verification in accordance with the guidelines on Subtyping (section 3.3.6) is also recommended. 
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3.4.6.4 Related guidelines 
The Top Heavy Hierarchy and Deep Hierarchy sections provide metrics to limit the complexity of the inheritance 
hierarchy. 

3.4.7 Combination of Distinct Abstractions  
The guidelines in this section extend those for Multiple Implementation Inheritance by restricting the use of multiple 
implementation inheritance to cases that do not involve repeated inheritance or the redefinition of competing 
implementations along separate paths.  

3.4.7.1 Motivation 
The guidelines in this section are intended to maximize the reuse of code while complying with the associated 
guidelines for Subtyping. Any use of multiple inheritance, however, can lead to ambiguities within the class 
hierarchy. Three potential sources of ambiguity are identified in Appendix A: (1) repeated inheritance, (2) 
redefinition along separate paths, and (3) independently defined operations with the same signature. The first two 
are eliminated by the guidelines in this section, which require that superclasses always be distinct rather than 
subclasses of a common superclass. As Meyer suggests, “This is the form that you will need most often in building 
inheritance structures, …” [18, page 521].  

3.4.7.2 Applicability 
A given class is implemented by inheriting the features of two or more distinct superclasses. The superclasses are 
considered distinct because they are not variants of a single abstraction [18, page 521] (have no common ancestors). 
The following example illustrates the basic structure.   

Plane

passenger_count() : int

Asset

purchase_price() : float

CompanyPlane

 

Figure 3.4-1 Combination of Distinct Abstractions 

As described by Meyer [18, page 521], a class Plane describes the abstraction suggested by its name. Operations are 
provided to query the passenger_count, altitude, position and speed of the airplane. Additional operations include 
commands to take_off and set_speed.  In a completely different domain, we have a class Asset that represents 
something that a company owns. Our concerns here are related to accounting, the manner in which the asset is paid 
for, its depreciation and sale. Operations associated with an asset include queries to determine its purchase_price 
and resale_value, and the actions depreciate, resell, and pay_installment.  

These classes are then combined by means of inheritance to create a new class CompanyPlane. Because each 
superclass is taken from a different domain and because they have no common ancestors, the odds of inheriting two 
independently defined operations with the same signature is small. 
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3.4.7.3 Guidelines 
Although the guidelines in this section extend those for Multiple Implementation Inheritance, the restrictions on 
inheritance structure eliminate ambiguities arising from repeated inheritance and redefinition along separate paths. 
As a result, we do not need the repeated implementation inheritance rule or the implementation redefinition rule 
defined by the guidelines for Multiple Implementation Inheritance. 

Only the independent implementation definition rule from the guidelines on Multiple Implementation Inheritance is 
required, to handle cases in which superclasses independently define operations with the same signature. Because 
the superclasses are distinct, any ambiguity usually represents an error, and should result in a renaming of one of the 
inherited operations in order to make them distinct. 

We must also follow the rules associated with the guidelines on Inheritance with Overriding and Subtyping.  

No diamond rule: Repeated inheritance is not permitted, i.e. no subclass may inherit from the same superclass via 
more than one path. 

Independent implementation definition rule: When more than one parent independently defines a method with the 
same signature, the user must explicitly decide whether they represent the same method or whether this 
represents an error. If they are intended to be different, renaming should be used to distinguish them. Otherwise, 
the definitions must be combined by explicitly defining a method in the subclass that follows the Simple overriding 
rule with respect to each parent class. (Identical to rule of same name in the section on Multiple Implementation 
Inheritance) 

3.4.7.4 Related guidelines 
The guidelines in this section are related to those for Inheritance with Overriding and Subtyping.  

3.4.8 Top Heavy Hierarchy  
The guidelines in this section address issues of complex class hierarchies that contain many classes and inherited 
features near the top (root) of the hierarchy. The intent is to reduce the number of opportunities for errors related to 
composition of competing parent implementations. 

3.4.8.1 Motivation 
Most class hierarchies have a characteristic shape. They are generally narrow near their top (root) and broad near 
their base, with a depth of between three and six. As a result the number of classes increases as a function of their 
distance from the root and the number of inherited elements increases in small steps.   

Problems can arise when class hierarchies fail to exhibit this shape. A class hierarchy with many classes near the 
root, and with many features associated with these top-level classes can be difficult to understand and change. “Top-
heavy multiple inheritance and deep hierarchies are error-prone, even when they conform to good design practice. 
The wrong variable type, variable, or method may be inherited, for example, due to confusion about a multiple 
inheritance structure.” [11, p. 503, spaghetti inheritance]  

3.4.8.2 Applicability 
These guidelines apply when the complexity of the class hierarchy is a concern and there are too many classes near 
its root. This is a particular concern when multiple inheritance is used and the number of features inherited from 
each of these upper level classes is large. 

3.4.8.3 Guidelines 
The following rules define the basic approach: 

Three parents rule: Any class near the top of the hierarchy with three or more parents warrants careful review. 
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Top heavy composition rule: Any class near the top of the hierarchy that inherits more than 20 features from each 
of two or more parent classes warrants careful review.  

Top to bottom rule: Any class hierarchy that contains more classes near the top of the hierarchy than near the 
bottom warrants careful review. 

A class is considered “near the top of the hierarchy” if it appears in one of the top two levels. A class is considered 
“near the bottom of the hierarchy” if it appears in one of the bottom two levels. A class hierarchy that successfully 
passes an inspection should be marked so as to avoid repeated review with respect to the same issue. 

3.4.8.4 Related guidelines 
Related guidelines include those for Inheritance with Overriding, Multiple Interface Inheritance, and Multiple 
Implementation Inheritance. 
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3.5 Templates 

3.5.1 Purpose 
Templates and the guidelines on Templates in this section are not unique to OOT. This section addresses issues 
raised and considered regarding DO-178B guidelines for development and verification when using templates in an 
object-oriented technology (OOT) environment. 

3.5.2 Background  
Templates provide a means of abstracting common structural and behavioral aspects of a family of classes or 
operations in a domain independent way. Template is the UML term for a parameterized model element with 
unbound (formal) parameters that must be bound to actual parameters before it can be instantiated. 

At a target language level, templates correspond to Ada generics and to C++ templates. A template is a 
parameterized code replication feature that provides stronger typing than macros. Templates provide for reusability 
in programming languages. Consider a Stack with a generically parameterized base type.  This allows a single Stack 
class to provide many class instantiations such as a Stack of integers, a Stack of any fundamental or user defined 
type, or even a Stack of Stacks.  

A template’s behavior results from its implementation, the values of the arguments used to instantiate the template, 
and the behavior of any types specified to it as arguments. The use of templates directly impacts: source code 
reviews, coding standards, requirements-based test case and procedure development and review, timing analysis, 
memory usage, requirements-based test coverage, source code to object code traceability, and structural coverage, 
including data coupling analysis and control coupling analysis. Dead code and deactivated code may also be a 
concern because unused functionality of a template may be considered either dead or deactivated code. 

3.5.3 Source Code Review  

3.5.3.1 Motivation 
The use of templates can affect source code reviews. Depending on the parameter types and the scope of the call, a 
different instantiation of the template may be invoked by the compiler. Each instantiation may use different sub-
components and features of the template. The template may contain features that are not used at all by a specific 
application. 

3.5.3.2 Related DO-178B Sections and Objectives 
The following DO-178B objectives for verification and coding standards are relevant to the recommendations in 
section 3.5.3.3 for using templates: Table A-1 objective 5, Table A-5 objectives 1 and 3, and Table A-9 objective 1. 

3.5.3.3 Guidelines 
Standards need to address the issues identified in this section. The source code developer and code reviewer should 
be aware of the implications and potential effects of using templates. A template must be reviewed with respect to 
the actual parameters to determine if the source code is verifiable. Consequently, the following practices are 
recommended: 

• It may be necessary for types to be defined in low level requirements to facilitate test coverage. 
• Coding standards should require templates to document all the assumptions about types to be used with that 

template. 
• Coding standards should be established to ensure the specific features of each template are understood, to ensure 

that they are the correct features for the instance, and that they comply with low level requirements. 
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• Coding standards should be established to determine which features of a template, if any, are not used by the 
application. Unused features may be considered dead or deactivated code. 

• Each template should be reviewed with respect to the actual parameters.  

3.5.4 Requirements-based Test Development, Review, and Coverage 

3.5.4.1 Motivation 
Templates are instantiated by substituting zero or more specific arguments for each formal parameter defined in the 
template class or operation. Test cases and procedures are developed based on the software high-level, low-level, 
and derived requirements. Consequently, test developers and reviewers may not be aware whether a template 
contains additional functionality, and may not be aware of or have visibility into all the functionality contained 
within a specific function that is instantiated by a template call. In general, requirements-based test cases and 
procedures may not test all functionality of the template, especially those functions which are not instantiated for a 
particular template. All instantiations should be tested to guarantee that the template functions as intended [23][11]. 

3.5.4.2 Related DO-178B Sections and Objectives 
See DO-178B section 6.4.4.3d, Table A-6: objectives 1-4, and Table A-7: objectives 1-4 regarding verification and 
integration processes. 

3.5.4.3 Guidelines 
Each instance of a template with a unique set of arguments should be tested for software at Levels A, B, and C. It is 
theoretically possible to test the template for all known instances if the types map to the same underlying 
representation and object code can be shown to be equivalent. In practice, the complexity of the instantiation 
process makes it difficult to verify all instances of a template without testing each instance individually [23]. It also 
complicates the requirements to test coverage traceability, as many tests may need to be executed to cover all 
possible instantiations that do not trace to specific requirement of the application. Also, the developer may need to 
provide protection that ensures that the unused functionality of the template (deactivated code) cannot be 
inadvertently activated. Therefore, while templates may lead to coding efficiencies, the use of templates may 
actually substantially increase the amount of requirements-based test development, review, and coverage needed. 

3.5.5 Structural Coverage for Templates 

3.5.5.1 Nested Templates 
Nested templates and using templates with other language constructs increases the complexity of the code. For 
example, child packages in Ada and friend classes in C++ can result in complex code. Although complex code is not 
prohibited by DO-178B, complexity can make structural coverage analysis more difficult. 

3.5.5.1.1  Related DO-178B Sections and Objectives 
The following DO-178B sections and objectives for integration and test coverage are relevant to recommendations 
in section 3.3.1.2 for using templates: DO-178B section 6.4.4.2, Table A-6: objectives 1-4 and Table A-7: objectives 
5-7. 

3.5.5.1.2 Guidelines 
In general, Templates should be analyzed for complexity and complex Templates should be avoided. Nested 
Templates and Templates used with other language constructs should be analyzed for complexity and justified. 
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3.5.5.2 Templates and Object Code Traceability 
Templates can be compiled using "code sharing" or "macro-expansion". Code sharing is highly parametric, with 
small changes in actual parameters resulting in dramatic differences in object code. Object code coverage is difficult 
and mappings from a template to object code can be complex when the compiler uses the "code sharing" approach. 

3.5.5.2.1 Related DO-178B Sections and Objectives 
The following DO-178B sections and objectives for structural coverage are relevant to the recommendation in 
section 3.3.2.2 for using templates: DO-178B section 6.4.4.2 and Table A-7: objectives 5-7. 

3.5.5.2.2 Guidelines 
Code sharing is not widely used. In general, code sharing should be avoided. 

3.5.5.3    Data and Control Coupling Analysis 
Use of templates can complicate data coupling analysis and control coupling analysis by not allowing visibility into 
the template for the analyst to verify that the correct template functionality is invoked for each instantiation (control 
coupling) based on the parameters (data coupling). 

3.5.5.3.1  Related DO-178B Sections and Objectives 
DO-178B section 6.4.4.3 c and Table A-7 objective 8 on data and control coupling are relevant. 

3.5.5.3.2 Guidelines 
Data and control coupling associated with templates should be evaluated with respect to the actual parameters. 
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3.6 Inlining 

3.6.1 Purpose 
Inlining and the guidelines on Inlining in this section are not unique to OOT. This section addresses issues raised 
and considered regarding DO-178B guidelines for development and verification when Inlining in an object-oriented 
technology (OOT) environment. 

3.6.2 Background  
When a compiler chooses to Inline, a method body is compiled without the call overhead (i.e., the Inlined method 
body’s object code is physically placed in the calling method’s object code). This is in contrast to the “usual” 
implementation of making a call (and potential context switch) during execution to a separate method with the 
associated parameters, if any being passed to the called method. If the compiler chooses not to Inline, a call to the 
method is inserted in the caller’s object code, and the called method’s object code remains separate. The Inlining of 
methods eliminates the overhead associated with a call, and is thus useful for optimization of performance. This 
performance optimization results in a space penalty, unless the Inlined method is shorter than the sequence of 
instructions used to make the call. Simple get and set methods, for example, are commonly used in object-oriented 
software and can sometimes be smaller than the calling sequence.  

When Inlining, it is important to know if the compiler will honor or ignore the inline request, whether the code has 
been Inlined or not, and what the impact is to the code.   

The following analyses are directly impacted by Inlining: memory and stack usage analyses, timing (performance) 
analysis, structural coverage analysis, and source code to object code traceability.  

Inlining may affect a number of verification methods as noted below. The use of Inlining, however, is not an 
obstacle to certification so long as its effects are understood and documented, and each effect upon each of these 
verification methods is addressed 

3.6.3 Inlining and Structural Coverage 
Some language constructs in combination with Inlining can impact structural coverage analyses, including data and 
control coupling and source to object code traceability analysis. 

3.6.3.1 Related DO-178B Sections and Objectives 
The following DO-178B sections and objectives for structural coverage and data and control coupling are relevant to 
the recommendations in section 3.6.3.2 for Inlining: Section 6.4.4.2 and Table A-7 objectives 5 through 8. 

3.6.3.2 Guidelines 
Table A-7, objectives 5-8: In general, Inlining should consist of a simple expression only, which is almost always 
one line of code. Virtual methods and methods that access other class methods should not be Inlined.  

Table A-7, objectives 5-7: Inline expansion may be handled differently at different points of expansion in order to 
optimize the code for the caller’s context. The structural coverage of the Inlined method should be evaluated at the 
point of each expansion. If object code is removed or object code is added, as determined by the source to object 
code trace for Level A software, then structural coverage must be verified separately for each expansion. 

Table A-7, objective 8: Inline expansion can eliminate parameter passing, which can affect the amount of 
information pushed on the stack as well as the total amount of code generated. This, in turn, can affect the stack 
usage and timing analysis. In addition, data coupling and control coupling relationships can transfer from the Inlined 
component to the Inlining component. For data coupling and control coupling, the verification approach should 
address the Inlining of code including worst-case memory usage analysis, stack usage analysis, timing analysis, call 
tree analysis, and data set/use analysis. 
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3.6.4 Source Code Reviewof Inlined Code 
Inlining can complicate source code reviews. Both the code developer and the source code reviewers must be aware 
of the implications and potential effects of Inlining. When an Inlined method is expanded in the context of the caller 
it may be possible for the compiler to simplify it in a number of ways, involving both space and speed. Compiler 
optimizations include directly referencing arguments and unrolling loops with known bounds as common examples. 
This is generally only a problem when an Inlined method is relatively complex and is optimized based on the 
context of the caller. 

3.6.4.1 Related DO-178B Sections and Objectives 
The following DO-178B objectives for verification are relevant to the recommendations in section 3.6.4.2 for 
Inlining: Table A-5 objectives 1and 3. 

3.6.4.2 Guidelines 
Table A-5, objective 1: Review of the Inlined method against the low-level requirements is sufficient to verify the 
behavior of all expansions. 

Table A-5, objective 3: Review of the Inlined method against the low-level requirements is sufficient to verify the 
behavior of all expansions. 
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3.7 Type Conversion 

3.7.1 Purpose 
Type Conversion and the guidelines on Type Conversion in this section are not unique to OOT. This section 
addresses issues raised and considered regarding DO-178B guidelines for verification and coding standards when 
types are converted in strongly typed languages, including when it is appropriate to convert types implicitly and 
when type conversion should be explicit. These “guidelines” do not represent new “guidance”, but an interpretation 
of existing guidance (DO-178B) with respect to Type Conversion for object-oriented (OO) languages that provide 
for strong typing with abstraction. Guidelines are in the form of recommended practices which support compliance 
with DO-178B objectives. An analysis should be conducted to examine the effects of type conversion for all 
languages as a part of satisfying the DO-178B verification objectives. Languages that are not strongly typed are not 
within the scope of this document. Examples of strongly typed languages include Ada, C++ and Java. Dynamic 
dispatch, which uses a form of implicit type conversion, is discussed in a separate chapter in this document. 

3.7.2 Background  
Strongly typed languages are an improvement over languages that are not strongly typed because they provide 
additional control of type conversion. User-defined type conversions are easier to identify and understand. Type 
Conversion may be implicit or explicit and may be checked (to determine if the type conversion results are valid and 
correct) or unchecked.  With implicit type conversion, the compiler is given the responsibility for determining that a 
conversion is required and how to perform the conversion. With explicit type conversion, the programmer assumes 
the responsibilities. Checked types can be checked at compile time (producing a compilation error for an invalid 
conversion) or at run time (usually resulting in a run-time error). Conversion can result in loss of data. Unchecked 
type conversions need to be verified by test to ensure conversion was correct.  

The following are directly impacted by implicit type conversion: potential loss of data or precision, performance and 
timing analysis, requirements-based test development, review and execution results, structural coverage analysis, 
data flow and control flow analyses, and source code to object code traceability.   

3.7.3 Overall approach  
Implicit type conversion raises certification issues related to the ability to perform various forms of analyses and to 
satisfy the verification objectives of DO-178B, including requirements-based testing and structural 
coverage analysis. Explicit type conversions can cause implicit loops and implicit conditionals. The use of explicitly 
checked type conversions are regarded as acceptable so long as they are properly verified and do not inhibit other 
verification methods, such as guaranteeing no loss of information and no unacceptable loss of data accuracy or 
precision. 

3.7.4 Source Code Review, Checklist, and Coding Standards 
Type conversions that are not checked by the language, either at compile time or at run time, can potentially result in 
code that has unintended behavior. 

3.7.4.1 Related DO-178B Sections and Objectives 
For object code traceability, source code review, checklist, and coding standards, see DO-178B Table A-1: objective 
5, Table A-5: objectives 1,3,4, and 6, Table A-6: objectives 1-4, Table A-7: objectives 3 and 4, and Table A-9: 
objective 1. 

3.7.4.2 Guidelines 
Unchecked type conversions are error prone and should be addressed specifically in coding standards and during 
verification. Coding standards may address unchecked type conversions, as in the following recommended practice:  
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Conversion rule: To help ensure intended function and verification, all checked and unchecked conversions should 
be justified or should be explicit, use the most restrictive conversion available, be conspicuously marked 
(identified) in the program source code, and be permitted only after thorough review and analysis of potential 
adverse effects. 

Verification of unchecked type conversions may be accomplished through code reviews, checklists, or analysis (e.g., 
static code checking), and testing. 

3.7.5 Loss of Precision in  Type Conversions 
Conversions, both implicit and explicit, that result in loss of data, data accuracy, or precision result in code that may 
be incorrect. The following type conversions, for example, may result in loss of data or precision in some languages:  

•  from integer types to the floating point types  
•  from a floating point type to an integer type   
•  from a more precise numeric type to a less precise version of the same numeric type; e.g. long to short, double to 

float, etc.   

Loss of data, data accuracy, or precision can be especially difficult to analyze and detect for implicit 
conversions and can be language dependent.  

3.7.5.1 Related DO-178B Sections and Objectives 
For source code review, checklist, coding standards, and data coupling analysis, see DO-178B Table A-5: objectives 
1, 3, 4 and 6; Table A-6: objectives 1-4; and Table A-7: objective 8. 

3.7.5.2 Guidelines 
Type conversions should be addressed for loss of data, data accuracy, or precision. This may be accomplished 
through coding standards and through verification including code reviews, checklists, or analysis.  Coding standards 
may address type conversions that can result in loss of data, data accuracy, or precision, as in the following 
recommended practice: 

Loss of information rule: To help ensure correctness, any conversions that may result in loss of data or data 
accuracy and precision should be justified or should: 

- be explicit, 

- use the most restrictive conversion available, 

- be conspicuously marked (identified) in the program source code, and only be permitted after thorough review 
and analysis of potential adverse effects. 

A clear understanding of the programming language being used is needed to identify and analyze implicit type 
conversions for potential loss of information. 

3.7.6 Type Conversions of References and Pointers 
Some references and pointers can be implicitly converted. Converting a reference from one type to a dissimilar type 
can result in code that has unintended behavior and is difficult to verify. 

3.7.6.1 Related DO-178B Sections and Objectives 
For source code review, checklist, and coding standards, see DO-178B Table A-5: objectives 1, 3, 4 and 6; and 
Table A-6: objectives 1-4. 
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3.7.6.2 Guidelines 
The following recommended practice may address implicitly converted references and pointers that result in code 
with unintended behavior: 

Supertype rule: To help ensure intended function and verification, all implicit type conversions involving 
references/pointers to class instances should be justified or should only represent a conversion from a subtype to 
one of its supertypes.   

3.7.7 Language specific guidelines 
As a result of the proposed solutions, the following language best practices should be taken into consideration 
[Source code review, checklist, coding standards]: 

1.   All implicit conversions should be checked for potential loss of precision or loss of data.  Specifically, the 
following should be justified:   

· From integer types to the floating point types (potential loss of precision) (JAVA and C++)  

·  From a floating point type to an integer type (potential loss of data) (C++)  

· From a more precise numeric type to a less precise version of the same numeric type; e.g. long to short, double 
to float, etc. (potential loss of data or precision) (C++)  

2.  Implicit conversions between logically unrelated types should be justified. Types are logically unrelated when 
one does not define a set of operations that is a subset of the other. For example, in C++ single argument 
constructors, such as a stack class taking a single integer argument, would allow implicit conversion. It is a good 
programming practice to use the keyword “explicit” to avoid implicit conversion between logically unrelated 
types. Unless the single argument constructor was created with the expressed purpose of permitting implicit 
conversion between the argument type and the class type, the constructor should be declared with the explicit 
keyword. Not using the explicit keyword should be justified. 
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3.8 Overloading and Method Resolution 

3.8.1 Purpose 
Overloading and the guidelines on Overloading in this section are not unique to OOT. This section addresses issues 
raised and considered regarding DO-178B guidelines when overloading is used.  Guidelines are in the form of 
recommended practices which support compliance with DO-178B objectives. These “guidelines” do not represent 
new “guidance”, but an interpretation of existing guidance (DO-178B) with respect to overloading and method 
resolution. 

3.8.2 Background 
Overloading means: using the same name for different operators or behavioral features (operations or methods) 
visible within the same scope. Overloading is a simple but useful form of static polymorphism when used 
consistently.  Conversely, too much overloading and improper use of overloading can make source code readability 
more difficult, and can thus contribute to human error. 

Overloading can enhance readability when the overloaded operators, operations or methods are semantically 
consistent. However, overloaded operators, operations, and methods could coincidentally have the same name and 
potentially have very different semantic behaviors. Specifically, overloading can be confusing when it introduces 
methods that have the same name but different semantics. This may be further complicated when overloading is 
combined with other language features (e.g., overriding, templates, etc.). Overloading can also complicate matters 
for tool use (e.g., structural coverage and control flow analysis tools) if the overloading rules for the language are 
overly complex.   

Overloading may affect a number of verification methods as noted below. The use of overloading is not an obstacle 
to certification so long as it is verified that the intended operation is, in fact, the operation called. 

3.8.3 Code Review Method 
Overloaded methods and operators can introduce unintended functionality. Overloading special language constructs, 
such as indexing or dereferencing, can make verification difficult.  Overloading methods and operators 
inconsistently can result in ambiguous code. 

3.8.3.1 Related DO-178B Sections and Objectives 
Overloading can potentially result in code that is overly complex and difficult to verify. See DO-178B [1] Table A-
5: objectives 3-4 related to verifiability of source code and conformance to standards. 

3.8.3.2 Guidelines 
Overloaded methods and operators should be addressed for inconsistencies which can lead to code complexity and 
ambiguities. Overloading special language features should be discouraged or justified. This may be accomplished 
through code reviews, checklists, or coding standards. Software code standards should include complexity 
restrictions that address overloading. For example, the following practices are recommended: 
 

Overloaded method rule: Overloaded operations or methods should form "families" that use the same semantics, 
share the same name, have the same purpose, and that are differentiated by the types of their formal parameters. 

Overloaded operator rule: Overloaded operators should obey the "natural" meaning and follow conventions of the 
language. For example, a C++ operator "+=" should have the same meaning as "+" and "=". Arithmetic operators 
should be overloaded using conventional notation whenever possible. 

Overloading in general: When calls are overloaded, reviewers should know exactly what is being called. 
Overloading of special language constructs must be justified. 
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In performing code reviews, the pre- and post- conditions for overloaded methods should be examined for consistent 
behavior in the context of the code under review.  

3.8.4 Implicit Conversion 
Object-oriented languages support varying levels of implicit conversion of arguments. That is, arguments can be 
implicitly converted to match the arguments of a method with the appropriate signature. The use of overloaded 
operators and methods with arguments that are implicitly convertible can potentially result in problems associating 
calls with methods that do not share the same structure of preconditions and postconditions. 

3.8.4.1 Related DO-178B Sections and Objectives 
Overloading can impact structural coverage analysis and data and control flow analysis. Overloading can also inhibit 
source to object code traceability. See DO-178B [1] Table A-7: objectives 5-8 related to test coverage. 

3.8.4.2 Guidelines 
To avoid potential problems involving the association of calls with methods, it is recommended that any family of 
overloaded operators and methods whose arguments (signatures) are implicitly convertible to one another or from 
one to another be required to have the same semantics. Formally, this means they must have the same structure of 
preconditions and postconditions. Informally, this means that they may share the same structure of test cases. 

The software user of any family of overloaded operators and methods whose arguments (signatures) are implicitly 
convertible should: (1) perform the call using arguments that do not need to be converted and (2) perform analysis 
appropriate to the level of the software to ensure the proper method is being called. 
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3.9 Dead and Deactivated Code, and Reuse 

3.9.1 Purpose 
This section identifies issues, perspectives, and recommendations for addressing concerns associated with software 
reuse, deactivated code, and dead code contained in aviation software applications as a result of using object-
oriented technology (OOT) development processes, environments, and tool libraries. This section provides 
clarification for certain sections of DO-178B and contains no new or additional guidance material. 

3.9.2 Background 
A major objective of OOT is to provide developers with the ability to create new software systems utilizing reusable 
software components where a component may be comprised of classes, methods, procedures, packages, modules, 
and so on. A reusable component often contains more software functionality than required by the system being 
certified. The requirements and design of the reusable component should be more generic and cover more situations 
if the component is truly reusable. If this extra functionality results in extra code in the system itself, then there may 
be deactivated code with which to deal. Deactivated code will likely be present in any application that uses general 
purpose software components and libraries, such as commercial off-the-shelf (COTS) software libraries provided 
with a compiler, operating system or run-time environment, for object-oriented development frameworks. 

Particular areas of concern for deactivated code when utilizing object-oriented (OO) techniques include: 

• Compiler generated default methods (e.g., default constructors, destructors, and assignment operators) 
• Completely unused classes 
• Unused methods within classes 
• Unused operations within overloaded methods 
• Overridden methods due to use of sub-classes 
• Existence of unexecuted paths because the entry conditions for those paths are never satisfied for a given 

system 
• Unused class attributes 
• Unintended functionality or anomalous behavior 

RTCA documents DO-178B [1] and DO-248B [2] provide guidance for reuse and modification of Previously 
Developed Software (PDS), deactivated code, and dead code. FAA Order 8110.49 [24] and AC 20-RSC [34] also 
provide additional guidance for the use of reusable software components including life cycle data. PDS is included 
in this discussion as it is one form of a reusable component. DO-178B guidance for upgrading software from a 
previous development (such as DO-178A) still applies. 

OO components taken from the non-avionics or non-commercial avionics industries and reused may have been 
designed to be highly reusable, but quite often not all of the necessary software life cycle data is available. Again, 
normal guidance from DO-178B applies in these situations. Generally, the product and process assurance artifacts 
must be produced as part of a first software approval.  

While DO-178B already provides guidance for deactivated and dead code, significantly more software component 
reuse is expected through OOT. The following subsections provide elaboration of issues which may become more 
pervasive as more and more software components are reused through the application of OOT. The issues for reuse, 
dead code, and deactivated code are addressed in the following subsections. References to existing DO-178B 
guidance are provided, as appropriate.   

3.9.3 Reuse of Software Components 
Reuse of software components may occur in three general ways. One way is through the use of “generic” or non-
application specific software components. Another approach, perhaps within the same system, is through the 
creation of multiple, option-selectable, “custom” or application specific components that implement variants of the 
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same algorithms. Finally, application specific components may be reused from one system in another similar but not 
identical system. 

Common examples of non-application specific reusable components are operating systems, standard libraries, math 
libraries and so on. Often these reusable components are developed by a third party to be highly reusable. The 
components may or may not be written using OOT; this detail may be hidden to the application developer. These 
non-application specific components may be provided as object libraries, which are linked into the system or 
alternatively may be provided as source libraries in the form of an OO framework. 

An example of reusable, option-selectable, application specific software components would be two slightly different 
flight control algorithms which correspond to two different airframes. In this case, some of the classes are active in 
one installation and deactivated in another. 

Application specific reuse occurs frequently and is generally desirable. However, unintended functionality may 
result. In one well-publicized case an inertial reference system was reused from one series of launch vehicle to 
another. Unfortunately the reused software was not modified to consider a different launch profile used by the latter 
series of launch vehicles. This oversight resulted in the destruction of a launch vehicle early in the launch process. 

Two of the previously noted approaches will likely result in some unused functionality as well as deactivated code. 
All of the approaches could potentially lead to unintended functionality. In all cases the software and the supporting 
software life cycle data must satisfy the objectives of DO-178B. 

3.9.3.1 Related DO-178B Sections and Objectives  
See DO-178B sections 2.4e, 4.2h, 5.4.3a&b, 11.1g, 11.10k, 12.1, 12.1.1, 12.1.2, 12.1.3, 12.1.4, 12.1.5, and 12.1.6.  
Additional clarification is contained in DO-248B sections 3.8 and 3.70.  Also refer to AC 20-RSC [34] and FAA 
Order 8110.49 [24]. 

3.9.3.2 Guidelines 
For standard libraries, the applicant needs to identify which Application Programming Interfaces (API) of the library 
are used and unused. For option-selectable software, the applicant needs to identify which classes and methods 
within classes are used and unused for particular installations. 

The use of individual subclasses, each of which represents a different option, is a good way to implement option 
selectable software. Only the appropriate sub-class is actually created in the system. The caller of the desired 
algorithm need not know which algorithm is actually in the system – it is hidden from the other parts of the program. 

Deactivated code for both forms of reusable components should conform to the Developer’s intent rule and the All 
code verified rule. In both cases unused interfaces, classes, and methods will be tied to either derived requirements 
or explicit, option-selectable requirements specified by the integrator. The derived requirements must be verified 
and driven into the System Safety Assessment (SSA) for consideration by the integrator. One acceptable means to 
identify unused functionality to the integrator would be through the use of traceability matrices. Verification data for 
derived requirements must satisfy the objectives of DO-178B. In addition, if the deactivated classes and methods are 
built into the executable object code for the various installation options, analysis should be performed to show that 
the deactivated code in a particular installation cannot be activated.  

Developer’s intent rule: All code must be exercised by requirements-based tests (the requirements may be 
derived).  Code not associated with requirements should be carefully evaluated and either removed (if it is dead 
code) or requirements should be developed for the code. Code which exists due to derived requirements needs to 
be explicitly identified by the developer and the associated requirements must be noted as “derived” for inclusion in 
the SSA process by the integrator.   

All code verified rule: All code executed within any aircraft or engine configuration must be verified per applicable 
DO-178B objectives, even if it can be demonstrated that a particular piece of code can never be activated in a 
specific system. Note that requirements will be needed for all deactivated code associated with the various aircraft 
or engine configurations (either derived requirements or explicit, option-selectable requirements specified by the 
integrator).  
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Reused components must be associated with requirements for the new system. The level of reuse may vary and 
include reused requirements data, reused code, and some reused of verification data. However the reused data must 
still satisfy the Developer’s intent rule and be consistent with the SSA. Objective evidence must exist to demonstrate 
all reused data satisfies the objectives of DO-178B.  

3.9.4 Requirements Traceability  
Traceability can be challenging when utilizing OO techniques. Of particular issue is how dead code, deactivated 
code and active code can be differentiated and verified in OO software. Given a method that is not used, or a method 
of an abstract class that is overridden in all subclasses, or an attribute that is never referenced, it may not be clear if 
this was intentional for possible future use, an accident, or an error. That is, in terms of source code the developer’s 
original intent may not be clear.  It should be noted that additional traceability concerns are documented in Section 
3.11 of this handbook.  This subsection just focuses on traceability as it relates to reuse, dead code, and deactivated 
code. 

3.9.4.1 Related DO-178B Sections and Objectives  
See DO-178B sections 5.4.3a&b, 5.5, 6.3.1a, 6.3.2a, 6.3.4e, 6.4.3, 6.4.4.1, 6.4.4.2, and 6.4.4.3.  Also refer to DO-
248B sections 3.8, 3.28 and 3.70. 

3.9.4.2 Guidelines 
Requirements should be developed to a sufficiently low level of detail so that the traceability between requirements 
and corresponding classes, methods and operators is clear. Tools to support OO software design and assist with 
traceability relationships are highly recommended. 

An applicant must demonstrate that an adequate process is in place to resolve dead code issues. A careful evaluation 
of apparently dead code is needed to ensure that code that appears dead is actually dead and that it is not just a 
documentation omission that makes it appear to be dead code. The Developer’s intent rule, as discussed in section 
3.9.3.2, should provide the documentation to make this task much easier. The process also needs to cover overriding 
of class methods including compiler generated default methods, operators, virtual functions or other OO-specific 
instances where confusion might arise due to the OO structure of the code. 

The following points should be observed when dealing with deactivated code:   

• Deactivated code which is intended to operate in any configuration used within an aircraft or engine requires 
associated explicit option-selectable requirements specified by the integrator or derived requirements created by 
the developer. 

• The design and architecture life cycle data will need to account for deactivated methods and attributes. 

• The documented traceability relationships should exist from the source code to either derived or explicit 
requirements (deactivated code will have associated requirements – dead code will exist due to a design error 
and there will be no associated requirements). 

• The completeness of requirements based tests against structural coverage objectives (derived requirements must 
be verified and will have associated source code – dead code will exist due to a design error and there will be no 
associated requirements). 

• The effect of derived requirements on the SSA process and an examination of unintended functionality which 
could be introduced by the derived requirements (derived requirements must be provided to the SSA process). 

• Runtime examination of methods invoked when the software component is integrated into the final target 
environment (control and data coupling/flow coverage are part of the DO-178B objectives – reusable software 
component interfaces will need to be examined by the integrator). 

Note that many OO languages provide features that if fully utilized will make the above activities much more 
difficult – e.g., multiple inheritance. Developers may find it useful to develop standards which create a deterministic, 
verifiable subset of a given OO language.  
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In the case of Level A software, object code not directly traceable to the source code will also be of concern as noted 
in DO-178B in 6.4.4.2, item b. Examples of non-traceable, compiler generated object code could include default 
constructors, default destructors, default copy methods, and default assignment methods. The developer should 
provide explicit guidelines in terms of utilization of default methods and the appropriate verification techniques in 
the planning and standards documents.  

See Appendix B.3.1 for an example of deactivated code with both deactivated methods and attributes. 

3.9.5 Certification Credit for Reused but Modified Class Hierarchy 
When a previously approved class hierarchy is updated, it can be unclear how much re-verification must be 
performed. Current guidance requires that a software change impact analysis must be performed to determine the 
extent of required re-verification activities. The situation is no different for OOT.  See Appendix B.3.2 for an 
example of how this class hierarchy change can have a subtle effect without any obvious changes to code. 

3.9.5.1 Related DO-178B Sections and Objectives  
See DO-178B [1], sections 11.3h and 12.1. Also, refer to FAA Order 8110.49[24]. 

3.9.5.2 Guidelines 
This issue applies to a certification when class hierarchies are not being completely re-tested. In this case, applicants 
must provide a regression analysis of all changes to a class hierarchy in the form of flattened class hierarchy. More 
succinctly, the applicant should adhere to the following rule: 

Flattened class re-verification rule: When a change to an element of a class occurs, re-verification of all 
subclasses whose flattened form contains the changed element is recommended. 

A clear trace of the subclasses that are affected by changes in base classes could be created either manually or with 
tools. 

If full re-testing is performed, an alternative (and recommended) approach is to apply the guidelines described for 
the Inherited test case rule (section 3.3.8.3). This states that “every test case appearing in the set of test cases 
associated with a class should appear in the set of test cases associated with each of its subclasses.” This conforms to 
the Liskov Substitution Principle [7] and will ensure the behaviors of the inherited methods are appropriate for each 
subclass. 

3.9.6   Changes in the Status of Deactivated Code Versus Actively Used Code 

3.9.6.1 Related DO-178B Sections and Objectives  
See DO-178B [1, sections 5.4.3a, 6.4.4.2c, 11.1g, 11.10k, 12.1.2a, and 12.1.3e].  Also, refer to AC 20-RSC [34]. 

3.9.6.2 Guidelines 
When previously developed software is submitted by an applicant for a new certification, changes in the status of 
deactivated code versus actively used code must be documented. Since the reusable components should follow the 
All code verified rule as previously discussed, the components should have already have been verified to obtain  
regulatory approval. However, in order to gain regulatory approval for the previously deactivated code, the 
integrator will need to document and verify the interfaces associated with the newly activated code. This may drive 
requirements, design, code, and verification changes from the previously approved baseline.  
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3.9.7 Service History Credit and Deactivated Code 
Software verification data has the potential to be valid for a particular certification basis and installation but not 
valid for different certification basis and installation. Often, applicants may apply for service history credit rather 
than re-doing the artifacts to comply with the certification basis. 

For example, assume an entire class hierarchy is developed and approved under DO-178B. A portion of this class 
hierarchy is approved in a certified system and has 10 years of service history. Ten years later, a new system is 
developed and potentially the regulatory guidance or certification basis has changed and it is now desired to use 
portions of the previously unused class hierarchy. It is not clear that one can use service history at this point or the 
old certification as a baseline, because of the activation of previously inactive code. 

3.9.7.1 Related DO-178B Sections and Objectives 
See DO-178B [1, section 12.3.5]. Also, refer to DO-248B [2, 3.19 and 4.4]. 

3.9.7.2 Guidelines 
Service history credit may be granted for deactivation mechanisms with appropriate service history data. 

The applicant should adhere to the following rule: 

Service history rule: Service history credit may only be given for activated code and deactivation mechanisms that 
have been actually executed.  The target environment, certification basis, and SSA will need to be considered in 
this process. 

Integrators and regulators need to be aware that deactivated code in a previous certification basis could easily 
become active in a newer certification effort (previously identified derived requirements for deactivated code that 
were provided for the earlier SSA process can assist this activity). Integrators and regulators need to review the 
documentation for code that has now become active and ensure that at least for that particular code, proper 
certification artifacts and life cycle data for the appropriate (new) standard as well as potentially new hazards within 
the system have been addressed. Code that becomes deactivated in a later certification is fine to leave in the code, as 
long as it is documented per volume 2 of this document. Note that DO-248B [2, section 4.4] addresses this issue. 
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3.10 Object-Oriented Tools 

3.10.1 Purpose 
This section addresses issues impacting compliance with DO-178B objectives for traceability, configuration  
management, development, verification, structural coverage analysis (including data coupling and control coupling 
analyses), dead code, and deactivated code when object-oriented development and verification tools are used. 
Additionally, tool issues related to dynamic dispatch, polymorphism, inheritance, frameworks and automatic code 
generation will be discussed. Tool qualification with regard to object-oriented technology (OOT) will also be 
discussed. As with most of the sections in this handbook, UML terminology and examples are used, since UML is 
the predominant OO modeling language currently being considered by the aviation community, and other modeling 
languages present similar issues. 

3.10.2   Background 
Current object-oriented (OO) tools (either internally developed or commercially procured) may not fully satisfy DO-
178B objectives with regard to configuration management, development, and verification. This section provides 
guidelines for object-oriented tools to assist applicants in satisfying DO-178B objectives. OO may present new 
challenges to OO tool vendors and applicants that have not been prevalent with structure-based development. The 
specific OO tool issues and guidelines are presented in the following sections; however, the more general concerns 
are: 

1. Addressing verification coverage for OO software, 

2. Using OO frameworks, automatic code generators, dynamic dispatch, polymorphism, and inheritance, and  

3. Addressing requirements management and traceability during OO development. 

3.10.3 Traceability When Using OO Tools 
Specific traceability issues and guidelines are addressed in sections 3.11.4 and  3.11.6 of this handbook. OO tools 
should implement the best practices as defined in those traceability sections and recommended guidelines for 
addressing those issues. 

3.10.4 Configuration Management When Using Visual Modeling Tools  
When using OO tools to develop software requirements, design and implementation, it is beneficial to work at the 
visual model level, especially when using UML. When working with OO tools, configuration management might be 
done at the modeling level (i.e., diagrams). This may cause a concern when the OO tools can introduce subtle errors 
into the diagrams. Since the model contains the software requirements and design, there must be some checks or 
assurance that the raw data files (model files) are not changed by the tool when saving, opening, checking files into 
the Configuration Management (CM) system or checking files out of the CM system. Some of the OO tools may 
introduce errors at the modeling level when opening, saving, or closing files. If the output of the tools is used by a 
subsequesnt process or configuration item, they may require special attention to establish determinism.    

3.10.4.1 Related DO-178B Sections and Objectives  
See DO-178B [1, Section 7] on the software configuration management process and objectives. Files that are part of 
the software “type design” (See [1], Section 9.4) should be controlled to Control Category 1 (CC1) criteria ([1], 
Section 7.3 and Table 7-1, and Annex A, Table A-2). It is likely that the visual models and charts and their 
corresponding files should be controlled to CC1, as they represent the Software Requirements Data ([1, Section 
11.9]) and the software Design Description ([1], Section 11.10). Guidance for tool qualification is in [1, Section 
12.2]. 
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3.10.4.2 Guidelines  
The developer should control the visual models, charts, any intermediate translations of the models and the code 
generated from the model. It is important to understand that there are two parts to UML: (1) a graphical notation, 
and (2) an underlying model representation with a well-defined semantics. The diagrams are simply views of the 
underlying model, and are physically separate from it. Each model element may appear in any number of diagrams 
or none at all. In the extreme, a UML model need not have any graphical representation at all. If the tools used to 
develop the models will automatically track the different components of the software requirements and design, then 
the tool may need to be qualified, unless the tool can be shown to be deterministic or the output of the tool is 
verified.  

Visual modeling tools should be shown to be deterministic and preserve software life cycle data integrity. Software 
visual modeling tools may need to add integrity checks to their raw data files to ensure that when the tool opens or 
closes a file, the file’s integrity is maintained. For example, checksums or printed copies of the models can be 
compared to the electronic visual models to ensure integrity or electronic copies could have integrity checks (cyclic 
redundancy checks) of the files computed and compared to ensure the tool does not introduce errors. The visual 
tools can also be qualified as software development tools. 

As with any software life cycle data, DO-178B configuration management concepts apply to the artifacts of OO 
tools (i.e. frameworks, model files, manual or automatic generated code, and the software environment)  

3.10.5 Visual Modeling Tools Frameworks 
Current visual modeling tools that are used for OO development make use of frameworks for automatic code 
generation, replacing tedious programming tasks. Frameworks may include patterns, templates, generics, and classes 
in ways requiring new verification approaches. The tool’s framework may or may not enforce requirements, design 
and coding standards. The tool’s framework may or may not ensure that the relevant objectives for software 
requirements, design and source code are achieved for all software to be included in the final software to be 
embedded in the airborne system. 

3.10.5.1 Relevant DO-178B Sections and Objectives 
DO-178B [1], Sections 4.4, 4.4.1 and 4.4.2 contain guidance for planning the software development environment to 
be used to develop the airborne software, including some language and compiler considerations. The environment 
and tools to be used are specified in [1], Section 11.15, the Software Life Cycle Configuration Index. Tool 
qualification criteria for software development tools are in [1], Section 12.2. Since components of the “framework” 
may end up embedded in the airborne software, guidance related to Previously Developed Software should also be 
addressed [24]. 

3.10.5.2 Guidelines 
Some of the OO tools provide a framework to automate and generate the source code from the UML model and 
framework “libraries” of patterns, templates, generics and classes; replacing the tedious coding tasks for the user. 
This will add code or objects (i.e., some tools may generate dynamic constructors, destructors, queues, stubs, 
skeletons, and other features). Engineers should understand the tools that are used to develop the airborne 
application and what components of the framework are ending up embedded in the airborne software. The 
framework and the tool may need to be qualified, and components of the framework embedded in the airborne 
application should be assured to the same level as the application. 

If components of the framework are going to be part of the airborne application, they must be assured to the same 
level as other components of the airborne application. 

3.10.6 Automatic Code Generators 
Current visual modeling tools that are used for OO development provide a capability to generate source code 
directly from UML models. Most of the existing UML tools today can use visual modeling diagrams to construct 
models and generate source code from these models. The level of source code generation depends on the tool and on 
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the user of the tool. Some of the tools support “full” automatic code generation and some generate only the skeleton 
of the code. For “full” automatic code generation, the user may also need to produce additional information (e.g.,  
state charts, activity diagrams, and/or UML action semantics) to specify additional detail of their implementations. 

Visual Model
(i.e. UML Model)

Source Code

OR Auto code
generation

Manual Code
Generation

Object code

Compiler

Executable

 

Figure 3.10-1 Code Generation using Visual Modeling Tools 

3.10.6.1 Applicability 
When discussing automatic code generation, this section assumes that the tool is an automatic code generator that 
generates source code. Then the source code is provided to a compiler that generates the object code. The object 
code can then be linked to generate the executable object code, and then loaded (or burned) into computer memory 
for execution. The tool may automate this process by providing one make file to do all of the steps. The code 
generated has to comply with the coding standards; the user may or may not have control over the code generator.   
This may be a problem is the code generated does not comply with the coding standard.    

3.10.6.2 Related DO-178B Sections and Objectives  
See DO-178B [1] sections 5.5 and 6.4.4, and see section 12.2 for software development tool qualification. 

3.10.6.3 Guidelines 
Most of the OO UML-based tools use some type of automatic code generation. Since the UML is a formally defined 
language, the tools can take the class diagrams, object model diagrams, state charts, and activity diagrams and 
generate the source code, or at least the structure. The code generator is a software development tool that may need 
to be qualified to the same level as the airborne software application (see section 12.2.2 of DO-178B [1]and FAA 
Order 8110.49 [24]). Qualification will be of a defined configuration. If the automatically generated code will be 
manually modified, the applicant should define and implement a process for controlling the automatically generated 
code, manually modified code and keeping track of all changes. 
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3.10.7 Structural Coverage Analysis Tools 
Because of the large manual effort required to perform and measure structural coverage, developers have become 
increasingly reliant on tools that measure the structural coverage and identify “gaps” in that coverage. The current 
structural coverage tools available may not “be aware” or have visibility to the internals of inherited methods and 
attributes and polymorphic references supported with dynamic binding such that they can provide a reliable 
measurement per section 3.12 of the structural coverage achieved by the requirements-based testing. Sections 3.12.4 
and 3.12.5 provide the details for inheritance and dynamic binding respectively. 

3.10.8 Structural Coverage Analysis for Inheritance 
Current tools performing structural coverage analysis of inheritance fall into two classes as identified in chapter 13: 

• Those that perform concrete coverage analysis, 
• Those that perform context coverage analysis. 

If a context sensitive structural coverage analysis tool is used, then where unnecessary re-verification was not 
performed, an explanation will need to be given for the shortfall in the structural coverage analysis coverage report.  
The HIT analysis can be used to document that re-verification was not necessary. 

If a context-insensitive (i.e., concrete) structural coverage analysis tool is used, the process will need to be 
augmented to ensure the appropriate re-verification of inherited features occurs, with the corresponding structural 
coverage of the inherited feature in the inherited context. The HIT analysis can be used to identify the necessary re-
verification. 

3.10.8.1 Related DO-178B Sections and Objectives 
See DO-178B [1] Table A-7 objectives 5, 6, 7 & 8, and sections 6.4.4.2 and 6.4.4.3 regarding structural coverage 
analysis and related sections 6.3.6, 11.3c(2), d and g, 11.13, and 11.14. 

3.10.8.2 Guidelines 
Both applicants and the FAA need to understand which form of analysis for inheritance their structural coverage 
analysis tools perform. If the tool performs analysis on concrete methods only, then the verification process will 
need to identify where additional verification is needed, and that the appropriate tests are run and the appropriate 
structural coverage is obtained. If the tool performs analysis on both concrete and inherited methods, then the 
verification process will need to identify where tool reported non-coverage was not needed. Additionally, the 
structural coverage tool may need to be qualified as a software verification tool. 

3.10.9   Structural Coverage Analysis for Dynamic Dispatch 
Two specific issues of concern for structural coverage are related to dynamic dispatch. The first issue exists because 
many current Structural Coverage Analysis tools do not “understand” dynamic dispatch, i. e. do not treat it as 
equivalent to a call to a dispatch routine containing a case statement that selects between alternative methods based 
on the run- time type of the object. As well, control and data flow analysis requirements of DO- 178B with respect 
to dynamic dispatch are more complex with respect with dynamic dispatch. 

As identified in Section 3.11, there are multiple approaches to the structural coverage analysis of dynamic dispatch 
(polymorphic reference). As the discussion in Section 3.11 makes clear, the proper verification of polymorphism 
and dynamic dispatch is still an active research area. Until a final answer is in, a minimal requirement should be the 
execution of all polymorphic references, and the execution of all possible dispatches collectively (i.e., coverage of 
all entries in the dispatch table) [26]. Unfortunately, current tools performing structural coverage of polymorphism 
with dynamic dispatch only measure the execution of the polymorphic reference.  

3.10.9.1 Related DO-178B Sections and Objectives 
See DO-178B [1] sections 6.4.4.2 and 6.4.4.3; and also related sections 6.3.6, 11.3c(2), d and g, 11.13, and 11.14. 
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3.10.9.2 Guidelines 
Structural coverage analysis tools for OO languages should measure coverage for each polymorphic reference and 
each entry in the dispatch tables. Unfortunately, current tools performing structural coverage of polymorphism with 
dynamic dispatch only measure the execution of the polymorphic reference, and thereby support only the first part 
of the recommended coverage analysis. These tools will need to be augmented with other analyses or tools in order 
to support the second part of the recommendation, coverage of every entry in the dispatch tables. For example, this 
can be achieved as a result of using the substitutability test guidelines described in Section 3.3 of this handbook 
(covering every method table entry): 

• Subtyping, 
• Formal Subtyping, 
• Unit Level Testing of Substitutability, 
• System Level Testing of Substitutability Using Assertions, 
• System Level Testing of Substitutability Using Specialized Test Cases, 

Compliance with these guidelines should be combined with statement coverage (executing every polymorphic call). 
Additionally, the structural coverage tool may need to be qualified as a software verification tool. 
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3.11 Traceability  

3.11.1  Purpose 

This section addresses issues influencing compliance with DO-178B objectives regarding traceability, when object-
oriented development and verification methods and tools are used. As with most of the sections in this handbook, 
UML terminology is used, since UML is the predominant OO modeling language currently being considered by the 
aviation community, and other modeling languages present similar issues. In this section, we assume that the 
software development process starts with a set of system level requirements allocated to software. These 
requirements can be functional requirements written in text, a requirement model, a set of Use Cases, or even a 
combination of these approaches.    

3.11.2 Scope/Background 

Current object-oriented (OO) methods and tools (either internally developed or commercially procured) may not 
satisfy the DO-178B objectives related to traceability. This section of the handbook documents the issues related to 
traceability when OO methods and tools are used and defines some guidelines for addressing those issues. 

Traceability is an important aspect of meeting DO-178B objectives. Traceability is used to:  

1. Enable verification of implemented system requirements, high-level requirements, and low-level requirements; 
2. Verify the absence of unintended function and/or undocumented source code;  
3. Provide visibility to the derived requirements. Traceability applies to both the verification and configuration 

management processes [2, FAQ #71]. 

In general, traceability is complicated by: 

• Functional requirements specified by Use Cases, 
• Dynamic dispatch, polymorphism, and inheritance,  
• Overloading and overriding functionality. 

3.11.3  Overall approach  
This section focuses on traceability that provides the evidence of a link between a requirement and its 
implementation, including the identification of derived requirements. Additionally, the link between UML artifacts 
and source code is discussed.  DO-178B [1] defines traceability as:  The evidence of an association between items, 
such as between process outputs, between an output and its originating process, or between a requirement and its 
implementation.   
The verification process provides traceability between the implementation of the software requirements and 
verification of those software requirements:  

• The traceability between the software requirements and the test cases is accomplished by the requirements-
based coverage analysis.  

• The traceability between the code structure and the test cases is accomplished by the structural coverage 
analysis.  

DO-178B guidelines require traceability between system requirements and software requirements to enable 
verification of the complete implementation of the system requirements. The low-level requirements should be 
traced to the high-level requirements ensure full implementation of the high-level requirements and to verify the 
architectural design decisions made during the software design process. In addition, traceability between source 
code and low-level requirements should be provided to enable verification of the absence of undocumented source 
code and verification of the complete implementation of the low-level requirements. Traceability from system 
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requirements to high-level requirements to low-level requirements to code also helps identify derived requirements 
and ensure they are passed up to the system safety assessment process.   

3.11.3.1 Related DO-178B Sections and Objectives 

The following DO-178B objectives are directly related to traceability:   
• Objective 6 of Table A-3;  
• Objective 6 of Table A-4;  
• Objective 5 of Table A-5;  
• Objectives 3 through 8 of Table A-7; 
• Objective 2 of Table A-8.   

Other objectives within DO-178B are indirectly related to traceability. The following OOT issues specifically make 
it difficult to comply with DO-178B’s objectives. Each issue is discussed with recommended guidelines to address 
the issues. 

3.11.4 Tracing to Functional Requirements  

Traceability of functional requirements through implementation may be lost or difficult with an object-oriented 
design or life cycle that supports OOT. A mismatch between function-oriented requirements and an object-oriented 
implementation may cause traceability problems. For example, providing traceability from a code sequence to a 
specific requirement may be difficult. Tracing to a "logical view" may not be sufficient.   

3.11.4.1 Guidelines 
The software development process usually starts with a set of system level requirements allocated to software.   
These requirements can be documented using text, requirement model or Use Cases.  In UML, Use Cases represent 
the functional requirements of the system. These functional requirements can be traced to the system level 
requirements that can be documented in text. The software functional requirements will be decomposed to create the 
low level requirements and any derived requirements necessary for the implementation of the software. Every 
method or a message reception in every object in the software will have to be traced to its requirement.   

Figure 3.11-1 shows a traceability model that can be used for OO based system. There are few ways to specify 
requirements, the user may chose to specify requirements in text, in use cases, or create a requirements model. Such 
a requirement model may be represented by a combination of requirements level (customer validated) Use Cases in 
addition to a class model of the system. The user may specify the requirement for a class Statecharts. In this case, 
the transition and the states of each Statechart could become the low-level requirements.    

Whatever method the user use to specify the requirements they need to be clearly tagged. The diagram above shows 
that design, implementation, and testing elements are traced to the requirements.   

In the design stage, instances are traced to classes. Classes may have relations and will have to be traced to each 
other. If class interfaces are specified as contracts (with pre/post conditions for operations and class invariants), then 
tools can be used to help trace the relationship between classes and between operations and check them for 
consistency and correctness. Each operation or a message provided by the instance will be traced to the instance.    
The implementation files will be traced to the instances.     

The test model will be traced to the requirements. This paper assumed that test classes will not have relations and 
each test class will have one instance. 
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Figure 3.11-1 Overview of Traceability  

3.11.5 Complex Class Hierarchies and Relationships 

Class hierarchies can become overly complex, which complicates traceability. Generalization, weak aggregation, 
strong aggregation, association and composition are some of the relations that can be used to create the class 
diagrams.   

3.11.5.1 Guidelines 

The realization of a Use Case may be specified by a set of collaborations. The collaborations define how instances in 
the software interact to perform the sequences of the Use Case. Traceability should be done at the instance level.   
When the user creates an instance, they must know what that instance is traced to and where its requirements are 
coming from. The instances themselves must be traced to their classes. The class and all of its contents and relations 
should be traced to a higher-level class or to a Use Case. Since the high level classes are the realization of Use 
Cases, which is the functional requirements of the software, the high level classes should be traced to the Use Cases 
that they implement. The Use Case must be traced to a system level requirement or a higher-level Use Case. Not all 
of the UML diagrams must be traced; tracing all of the objects in the software should be sufficient. Only the 
diagrams and UML modeling elements that add some requirements or affect the generation of the executable should 
be traced. Class hierarchies and their relations need to be flattened and every class should have clear traceability to 
its high level class, Use Case, or text requirements.  

The following relations affect traceability in the following ways: 

• Association is the semantic relationship between two or more classes that specifies connections among their 
instances. In this case, there is no need to trace associations, since they only indicate that one class can talk to the 
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other.  Each class should have its own traceability to its requirements. Association classes are treated as regular 
classes and they will have to be traced to the requirements that cased their existence.    

• Aggregation is a special form of association that specifies the whole-part relationship between the aggregate 
(whole) and a component (part). Aggregation will affect traceability, because the instance of the aggregate 
(whole) will have to be traced to both the whole and the part requirements. The part will only have to be traced to 
its own requirements 

• Generalization is the relationship between a more general element and a more specific element. The specific 
element is fully consistent with the more general element. An instance of the more specific element may be used 
where the more general element is allowed. Generalization will affect traceability, because any instance of the 
specific element should be traced to its own requirements. Additionally, it should be traced to the requirements 
of the general element from which it is inherited. 

Normally traceability is limited to the UML elements and does not include diagrams.    

3.11.6 OO Design Notation and Traceability Ambiguity  

When working with UML or OOT in general, the requirements, design, and implementation may have multiple 
views. Each view may add or show different information. Unfortunately, many of the UML tools do not currently 
provide a traceability mechanism. Additionally, UML is a language that was written to provide the user with 
maximum flexibility, which in the safety-critical world might reduce controllability.   

3.11.6.1 Guidelines  

Each UML element (e.g., class, method, object, Use Case) should have traceability, but not every diagram 
containing those elements needs to be traced. For example, an object model diagram may not need to be traced, but 
every object in the diagram should be traced to its own requirements. The developer should have a process that 
enforces the guidelines for traceability, some of the basic guidelines include: 

• Every object in the software should be traced to its class. 
• Every class in the software should be traced to its super class.  
• Every function call or an message should be traced to its class. 
• Each overridden or overloaded operation should be traced to some requirement(s) or Use Case (s). 
• Every class or super class should be traced to the Use Case (s) that they realize. 

3.11.7 Traceability and Dynamic Binding/Overriding 

Establishing functional requirements coverage of a class is difficult to assess given dynamic binding and overriding.   
Specifically, it may be difficult to know if a class has been fully exercised. 

3.11.7.1 Guidelines  

Traceability must be performed to the object level. Each function in an object needs to be traced. This will provide 
traceability to the implementation of any virtual functions or functions that have been overridden.  Component based 
design or Design-by-contract approaches may be used.   

3.11.8 Dead and Deactivated Code  

The difference between dead and deactivated code is not always clear when using OOT. Without good traceability, 
identifying dead versus deactivated code may be difficult or impossible.  

3.11.8.1 Guidelines  

If the OOT traceability is done to the function or event (message) level, then it will be possible to identify dead code 
at the function level. This will not cover code within a function. OO concepts encourage building reusable classes.  
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The idea of reuse means that classes are built with generic functional requirements that can be used in multiple 
systems. In this case, the reusable library may include some deactivated or dead code in a specific application. 
Traceability analysis should be performed on the reusable library in order to identify dead and deactivated code.  
Dead and deactivated code is further addressed in section 3.9 of this handbook.  

3.11.9 Many to Many Mapping of Requirements to Methods  

The isolation of functions into classes may result in a mapping of requirements to OOT models in which: 

a) A given requirement may map to a number of functions spread over several classes; 

b) The same function, in a given class, may contribute to more than one requirement. 

This issue applies to the mapping of requirements to methods at all levels of OO modeling (during both analysis and 
design). 

3.11.9.1 Guidelines  

Each function within an instance should be traced to its requirements. The function can have more than one 
requirement, but it should not have more than one Use Case. This is the normal case for a Use Case driven 
development approach but it is a good practice to reduce the complexity of traceability even if another approach is 
used.  In this case, we may have one Use Case traced to many functions. The traceability data for each Use Case 
should contain the references to all of the functions within the objects that implement that Uses Case.  

If it is necessary to trace one function to multiple Use Cases, then Use Case relationships may be used to help 
eliminate redundancy and support traceability. 

3.11.10 Iterative Development 

Iterative development is often desired in OO implementation. Each iterative cycle has its own requirements 
(normally a set of Use Cases), design, implementation, and test. There is a risk of losing traceability when using 
iterative development. This can be caused by adding or changing requirements, design, or implementations.  

3.11.10.1 Guidelines  

Iterative development is most effective when each iterative cycle is completed prior to starting the next cycle. The 
iteration should have its own requirements, design, implementation, and test. Completeing traceability for each 
iterative cycle is recommended, and an impact analysis should be done on the current iteration, whenever the 
requirements from the previous iterations are changed.  

3.11.11 Change Management for Reusable Components 

Reusability is one of the objectives of OO development, but reusable components may be hard to trace because they 
are designed to support multiple usages of the same component. Reusable components may also have functionality 
that may not be used in every application.  

3.11.11.1 Guidelines  

Traceability must be done for each application regardless of its usage of reusable components. When reusable 
components are used, the traceability should show implementation and verification mapping for all requirements, or 
as a minimum, provide verification and justification for the unused functionality. See section 3.9 of this handbook 
for further guidelines on reuse. 
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3.12 Structural Coverage 

3.12.1 Purpose 
This section addresses issues concerning compliance with the structural coverage objectives given in DO-178B [1] 
and clarified in DO-248B [2] for certain features of object-oriented technology. 

3.12.2 Background 
Structural coverage as one of the adequacy measures of requirements-based testing will not go away with OOT.  
Most of what has been learned in the testing of traditional (functional) systems still applies within OOT. However, 
traditional functional testing with traditional structural coverage metrics based on source code may not be adequate 
for object-oriented software [25][33][34]. In particular, inheritance and polymorphism with dynamic dispatch are 
two OOT mechanisms that present problems with verification in general, and testing and structural coverage in 
particular [25][34][19]. 

The FAA has already sponsored some research in this area [26]. Not only were issues identified for inheritance and 
polymorphism with dynamic dispatch, but the broader issue of data coupling and control coupling was also raised. 

3.12.3 Overall approach 
This section is intended to provide an approach for addressing DO-178B [2, FAQ #71] objectives for structural 
coverage when using the OO features of inheritance and polymorphism with dynamic dispatch. The broader issue of 
data coupling and control coupling is also mentioned as a place-holder. The section is related to DO-178B [1] 
sections 6.4.4.2 and 6.4.4.3; and also related to sections 6.3.6, 11.3c(2), d and g, 11.13, and 11.14, Table A-7, 
objectives 5, 6, 7 and 8. 

3.12.4 Structural Coverage of Inheritance 
The issue concerning the adequate verification of inheritance is whether fully verified inherited features, particularly 
methods, need re-verification in the subclass. It turns out that some, but not all, inherited features require re-testing 
(and coverage) within the subclass [27][28, ch. 7, pp. 249-267)][29, ch. 11, pp. 164-213]. The Hierarchical 
Incremental Testing (HIT) of class structures approach was developed to identify where retesting of inherited 
features was necessary, and where it was not [27]. Table 3.12-1 presents a summary of HIT. The first column of 
Table 3.12-1 identifies the incremental change made in the subclass. There are three changes made in subclasses that 
impact the testing performed on the superclass: 

• A method can be inherited. If there are no direct or indirect polymorphic references affecting this method, then it 
remains unchanged in the purest sense, and no retesting is needed. If there are polymorphic references affecting 
the method, then the method can be considered to have a change in integration, and some retesting will be 
necessary. 

• A method can be overridden. This is the case when a new method is provided in the subclass for an existing 
method in the superclass. 

• A new method can be added. This includes either the addition of a new operation and method in the subclass, or 
the addition of a method for an abstract operation in the superclass. 

In addition, new attributes can be added in the subclass. The impact of these new attributes is through the new or 
overridden methods that access those attributes. The second column of  Table 3.12-1 identifies the testing impact in 
the subclass for the incremental change. 
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Incremental 
Change 

Testing Impact 

Inherited 
(unchanged) 
Method 

No retesting needed if the method interacts, directly or indirectly, only with inherited methods 
and attributes. 
Limited retesting needed when the method interacts, directly or indirectly, with new or 
overridden methods or attributes.  Existing tests that deal only with inherited methods and 
attributes are still applicable, along with the coverage analysis for those tests.  Some existing 
tests can be reused, though new coverage analysis will be needed for those tests.  Some new tests 
will be needed, along with the coverage analysis for those tests. 

Overridden 
(changed) 
Method 

Extensive retesting and coverage analysis is needed.  Many existing tests can be reused, though 
new coverage analysis will be needed for those tests.  For most of these tests, the requirements 
coverage should still be applicable since (only) the implementation has changed.  Some new tests 
will be needed, along with the coverage analysis for those tests. 

New Method Complete testing and coverage analysis is needed.  All new tests will be needed, along with the 
coverage analysis for those tests. 

Table 3.12-1 Hierarchical Incremental Testing Summary 

One of the techniques introduced for the understanding of inheritance is that of the flattened class. In a flattened 
class, all inherited features are represented along with the features explicitly defined within the subclass. Figure 
3.12-1 illustrates a normal inheritance hierarchy on the left, and a flattened inheritance hierarchy on the right. In the 
flattened form, all inherited attributes and methods appear in italics. 

 

Inheritance Hierarchy Flattened Inheritance Hierarchy
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Method_3()
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Class_2
Attribute_1
Attribute_2

Method_1()
Method_2()
Method_3()

Class_3
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Attribute_3

Method_1()
Method_2()
Method_4()

 

Figure 3.12-1 Inheritance 

3.12.4.1 Guidelines 
Requirements-based testing and requirements and structural coverage of the flattened class is a recommended 
practice for OO [11, ch. 10.5]. A number of researchers recommend class flattening as they believe the savings from 
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trying to save tests will be negated by the effort of the analysis, plus the circumstances where savings are possible 
will be very rare in real systems. Binder states “Retesting can be safely skipped only when (1) there is no possible 
data flow or control flow from or to the superclass and subclass methods, or (2) the subclass is null and simply 
renames the superclass.” [11, p. 510].  The difference between covering the class, and covering the flattened class 
for Method_1 from Figure 3.12-1 is demonstrated in Figure 3.12-2 and Figure 3.12-3. 

In Figure 3.12-2, complete coverage is shown for Method_1 as a composite of the coverages obtained within 
Class_1, Class_2 and Class_3.  This is referred to as coverage of concrete features. 

Class_1

Class_3Class_2

Method_1()

Method_1() Method_1()

Structural
Coverage

Report

 

Figure 3.12-2 Concrete Coverage  

In Figure 3.12-3, only partial coverage is shown for Method_1 in the three different classes. This is referred to as 
context coverage. 

 

Class_1

Class_3Class_2

Method_1()

Method_1() Method_1()

Structural
Coverage

Report

 

Figure 3.12-3 Context Coverage 

DO-178B does not require the context sensitive verification required by flattened classes. Always flattening the 
class hierarchy for verification, recommended in [26], will lead to some over-verification of certain inherited 
features (e.g., simple get and set methods for attributes). Fortunately, HIT can be used to prevent the over-
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verification by identifying those methods that do not need any re-verification. The HIT analysis could be automated, 
incorporated into structural coverage analysis tools and qualified. 

3.12.5 Polymorphism with Dynamic Dispatch 
Polymorphism with dynamic dispatch is a mechanism within OOT whereby a name can refer to objects of different 
classes. The issue concerning the adequate verification of polymorphism with dynamic dispatch is whether the 
method with the polymorphic reference has been adequately integrated with all of the methods the polymorphic 
reference can dispatch to. Polymorphism with dynamic dispatch is illustrated in Figure 3.12-4 and  Figure 3.12-5. 
Figure 3.12-4 presents the flattened class from Figure 3.12-1. Recall that in a flattened class, all inherited features 
are italicized. 

 

Class_1

Attribute_1
Method_1()
Method_2()

Class_2
Attribute_1
Attribute_2

Method_1()
Method_2()
Method_3()

Class_3
Attribute_1
Attribute_3

Method_1()
Method_2()
Method_4()

 

Figure 3.12-4 Flattened Inheritance  

Assume that in our system we have an “Object_X” that can refer to objects of either Class_1, Class_2 or Class_3.  
When we see the call to “Object_X.Method_2()” in the source code for our system, different Method_2’s will be 
called depending on the run-time class of the object that “Object_X” refers to. This is depicted graphically in Figure 
3.12-5. 

Figure 3.12-5 shows that the reference “Object_X.Method_2()” can dispatch to either Class_1.Method_2() or 
Class_2.Method_2().  Class_1.Method_2() will be called if “Object_X” refers to an object of either Class_1 or 
Class_3. This is because Class_1.Method_2() was defined in Class_1 and inherited in Class_3.  Class_2.Method_2() 
will be called if “Object_X” refers to an object of Class_2. This is because Class_2.Method_2() was defined in 
Class_2, where it overrode the definition ofClass_1.Method_2(). Polymorphism with dynamic dispatch has made 
some of the control flow, and thereby the associated data flow, implicit in the source code rather than explicit. 
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Object_X
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Class_1.Method_2() Class_2.Method_2()
 

Figure 3.12-5 Dynamic Dispatch  

3.12.5.1 Guidelines 
Numerous approaches have been proposed for the adequate testing of polymorphic references: 

1. The first approach says that execution of the polymorphic reference is sufficient. This approach confines testing 
to the level of abstraction of the source code (i.e., every statement has been executed). This approach assumes 
that the underlying implementation hides no details requiring verification below the abstraction level of the 
source code. This approach treats dynamic dispatch as being equivalent to static dispatch. Watson and McCabe 
refer to this as the “optimistic approach” [30, pp. 62-63].  DO-178B currently does not require verification below 
the level of the source code for software at Levels C and B. DO-178B does require verification beyond the 
source code for software at Level A. 

2. The second approach says to treat a polymorphic reference as a case/switch statement [31]. This approach 
assumes that the underlying implementation is important. This approach can be implemented in two major ways. 
The first way is to recognize that the “case/switch statement” is repeated in multiple places. Testing and coverage 
could be obtained from the collective executions of all the references (inlined call to the case/switch statement). 
The second way is to exhaustively test and cover the feasible “branches” at each reference, which makes this 
approach equivalent to the next one. 

3. The third approach says that execution of every possible dispatch is required. Binder states “Although a 
polymorphic message is a single statement, it is an interface to many different methods. Just as we would not 
have high confidence in code for which a only a small fraction of the statements or branches had been exercised, 
high confidence is not warranted for a client of a polymorphic server unless all the message dispatches generated 
by the client are exercised” [29, p. 438]. Watson and McCabe refer to this as the “pessimistic approach” [30, p. 
63].  This approach can also be implemented in two ways. The first way is to look at polymorphic messages only 
and ignore polymorphic parameters. The second way is to consider the polymorphic parameters. This brings in a 
level of complexity that the next approach attempts to deal with. 

4. The fourth approach says that execution of a “mathematically significant” subset of all possible dispatches is 
required[32]. This approach attempts to mitigate the enormous number of tests and required effort that can result 
from the exhaustive execution of all possible dispatches. 

5. The fifth and final approach says that we need to execute every polymorphic reference, and for one reference site 
that forms an equivalence class with all others dispatching on the same base class, require execution of every 
possible dispatch. Note that the exhaustive dispatching can be done in a test driver instead of the application.  
This is another attempt to mitigate the exhaustive approach. Watson and McCabe refer to this as the “balanced 
approach” [30, pp. 63-64]. 

As the previous discussion has made clear, the proper verification of polymorphism and dynamic dispatch is still an 
active research area. Until a final answer is in, a minimal requirement should be the execution of all polymorphic 
references, and the execution of all possible dispatches collectively (i.e., coverage of all entries in the dispatch table) 
[21][26]. 
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Current tools performing structural coverage of polymorphism with dynamic dispatch only measure the execution of 
the polymorphic reference, and thereby support the first approach discussed previously. These tools support the first 
part of the recommended approach. These tools will need to be augmented with other analyses or tools in order to 
support the second part of the recommendation. 

3.12.6 Data Coupling and Control Coupling 
Data coupling and control coupling relationships can be far more complicated and obscure in OOT than they are in 
traditional (functional) systems/software.  

One impact on data coupling and control coupling is in the nature of OOT. OOT encourages the development of 
many small, simple methods to perform the services provided by a class. Often the control flow is moved out of the 
source code through the use of polymorphism and dynamic dispatch. In essence, the control flow, and thereby the 
control coupling, will become implicit in the source code, as opposed to being explicit. There is a similar effect on 
the data flow, and thereby the data coupling.  

OOT also encourages hiding the details of the data representation (i.e., attributes) behind an abstract class interface  
Suggested “best practice” is that attributes of an object should be private, and access to them only provided through 
the methods appropriate to the class of the object. Being able to access attributes only through methods makes the 
interaction between two or more objects implicit in the code.  

Some simple examples demonstrating how complex things can get are given in[35]. 

3.12.6.1 Guidelines 
This is an active area of research, both within academia and the FAA.  At this point in time, this handbook can give 
no guidance on dealing with data coupling and control coupling within OOT. 
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Appendix A Frequently asked questions (FAQs) 
Does DO-178B require compliance with the subtyping rules for substitutability (LSP)?   

No. However, the structural coverage criteria must still be met, and the issues raised in volume 2 must still be dealt 
with in some manner. Compliance with the subtyping rules is just one way to do so. And is compatible with the 
definition of the Generalization relationship by UML (below). 

Does UML require compliance with the subtyping rules for substitutability (LSP)? 

UML does not directly mention the Liskov Substitutiuon Principle (LSP) or the rules given in this handbook. UML, 
however, does say that the Generalization (subtyping) relationship implies substitutability, which indirectly implies 
compliance with LSP. 

When is it necessary to verify subtyping relationships? 

At a minimum, we want to ensure substitutability when instances of different subclasses may be assigned to a 
variable at run time in a given system (i.e., when polymorphic assignment is actually used).    

Technically, we need not be worried about cases in which a given variable is assigned instances of different 
subclasses, only in different instances of the system (e.g., as a means of parameterizing the system’s behavior).   

Still, given that the UML definition of subtyping implies substitutability, it is also technically an error to use this 
relationship in UML models where this is not the case.   

And it is, in general, a “good idea” to verify subtyping relationships from the outset, not just when we discover 
substitution actually occurs within a given system. 

Is it necessary to use unit level testing to verify subtyping relationships? 

No. System level testing, static analysis, and proofs may also be used to ensure (or help ensure) that the subtyping 
rules are followed. 

Is it necessary to use UML in order to follow the guidelines? 

No. The use of UML terminology and UML examples is only a convenience. The principles underlying the 
guidelines apply to other OO methodologies and modeling notations as well. 

Is it necessary  to use special OO coverage tools to measure structural coverage of dynamic dispatch? 

No. By following an appropriate test process , it is possible to ensure that all entries of all dispatch tables are 
exercized. The use of tools to measure this type of coverage, however, is still encouraged.  

What role should static analysis play in the verification of OO systems?  

The guidelines have been developed to restrict the use of OO in such a way as to encourage the use of various forms 
of static analysis. The AVSI Guide [21], which was the basis for the first version of the Handbook, specifically 
addresses how various guidelines affect the forms of static analysis recommended by [23], and required by DO-
178B. 

How do the guidelines map to the DO-178B software levels? 

The original AVSI Guide provided a mapping of guidelines to DO-178B software levels. This mapping was based 
primarily on a consideration of which restrictions on OO features were necessary to enable the use of the types of 
analysis techniques required by DO-178B at each software level, and secondarily on the error prone nature of certain 
features (such as multiple implementation inheritance).  This table does not appear in the publically released version 
of the Guide. A similar mapping based on similar criteria, however, may appear in a future version of this handbook. 
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How about the use of “work arounds” as a substitute for the direct use of OO features? 

The guidelines are not intended to give a “free pass” to the use of OO-like work arounds as a substitute for the direct 
use of OO features. For example, the intent is not to favor the hand coding of dispatch routines (containing explicit 
case statements) over the use of dynamic dispatch. By drawing an analogy between the two, the guidelines impose 
the same coverage criteria for both.   

Similarly, issues related to substitutability must be addressed by any system that permits the “plugging in” 
(substitution) of one piece of software in place of another (either at run time or in different versions of the system 
intended for different customers), whether the system uses OO or not.  The OO subtyping guidelines are only a plus 
in this regard. If you intend to allow substitution (of either form) in an OO system, following the guidelines provides 
a well trod path for doing so. Something comparable, and not addressed by this Handbook, would still be required if 
a different approach were taken. 
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Appendix B Extended guidelines and examples 

B.1 Single Inheritance 

B.1.1 Extension of the Inheritance with Overriding Guidelines 
The following sections extend the definition of the Inheritance with Overriding to include: 

• an avionics related example,  
• a description of the general structure of the problem and the roles of the participants,  
• a mapping of the general guidelines it offers to language specific guidelines for Java, Ada95, and C++. 

B.1.1.1 Examples 
Consider an avionics display system that defines a class DisplayElement and its subclasses (Figure B.1-1).  

A given display is composed by drawing its associated elements. In order to draw the pilot's attention to critical 
information, we highlight specific elements while hiding others. The specifics of drawing an element, hiding it and 
highlighting it vary according to the type of element. To allow variations on the display for specific customers and 
aircraft, and to minimize the impact of future changes, the overall application should deal with elements only 
abstractly (e.g., in terms of the kind of information they display and not how they display it). 

The code to draw the display is then: 

for each display element 
call the draw method associated with its run time class 

end 

The code to highlight a selected set of elements is then: 

for each display element 
call the highlight method associated with its run time class 

end 

The code to declutter the display is then: 

for each display element 
compare the importance of the element to a cutoff value for the importance of elements to be displayed 
if the element is not important enough 

call the hide method associated with its run time class 
end 

end 
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DisplayElement

importance : int
xOrigin : CoordinateValue
yOrigin : CoordinateValue

draw()
highlight()
hide()

NonTextualElement

highlight()

PrimitiveNonTextualElement

draw() 
highlight() 

AltitudeTape 
width : GraphicsDistance 
height : 
G hi Di tcolorScheme : ColorScheme 
displayedValue : Altitude 
draw() 
getDisplayedValue() : Altitude 
setDisplayedValue(altitude : Altitude) 

AirspeedTape

width : GraphicsDistance
height : 
G hi Di tcolorScheme : ColorScheme
displayedValue : Airspeed

draw() 
getDisplayedValue() : Airspeed
setDisplayedValue(airspeed : Airspeed)

Compass

radius : GraphicsDistance
colorScheme : ColorScheme
displayedValue : Heading

draw()

getDisplayedValue() :  Heading
setDisplayedValue(heading : Heading) 

TextualElement 
width : GraphicsDistance 
height : GraphicsDistance 
displayedValue : String 
draw()
highlight() 
getDisplayedValue() : String 
setDisplayedValue(string : String) 

Client

 

Figure B.1-1 Class Hierarchy 

B.1.1.2 Structure 
In general, a client method calls an operation associated with a target object. The client method may be associated 
with any object, including the target object itself. The run time class of the target object is a concrete class which 
may have superclasses and subclasses. The method associated with the run time class of the object is determined at 
compile time using the simple guidelines for specialization and overriding. 

Polymorphically the client method may view the target object at run time as an instance of its run time class or, 
more abstractly, as an instance of any of its superclasses. In all circumstances, however, it is the method associated 
with the run time class of the target object that is executed when the operation is called. 
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Figure B.1-2 Class Relationships 

B.1.1.3 Participants 
The client method calls the target operation on the target object, which executes the method associated with it by the 
run time class of the object. 

B.1.1.4 Java guidelines 
Java is a strongly typed language. It provides dynamic dispatch based on the target object of a method call. The 
dynamic loading of classes is supported but can be restricted (by eliminating the class loader from the run time 
environment). Only single inheritance of implementation is permitted. The run time type of an object is assigned at 
the point at which it is created and cannot be changed during the object’s life time. 

The Simple overriding rule: is enforced by the language if the overriding of concrete methods by abstract methods 
[5, p. 159, section 8.4.3] is disallowed, and if all explicitly thrown exceptions are checked exceptions (in the Java 
sense). When exception handling is not used, code reviews should be used to enforce the more general guideline that 
an overridden version of a method can only report either the same errors, or a more restricted set of errors than its 
parent version. 

The use of the keyword super in a call expression can be used to violate the Simple dispatch rule:. As a result, the 
use of the keyword super should only be permitted as a means of extending a superclass method (in accordance 
with the guidelines for Method Extension).  

In accordance with the Initialization dispatch rule:, the body of a constructor should not be permitted to call any 
operations on the object under construction except other constructors or private operations. 

The bounded and deterministic nature of dynamic dispatch must be demonstrated based on the actual 
implementation. Typically dispatch tables are constructed by a static linker, or by the Java Virtual Machine (JVM) 
or a Java processor as classes are pre-loaded. This makes dispatch times for invokevirtual [6] both small and 
fixed. The dispatch time for invokeinterface [6] potentially involves a search and may introduce a higher 
overhead. Dispatch times, however, should still be both bounded and deterministic. invokeinterface can also be 
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implemented using dispatch tables if the implementation takes advantage of the fact that new classes cannot be 
loaded dynamically, making it equivalent to invokevirtual. 

B.1.1.5 Ada95 guidelines 
Ada is a strongly typed language. To introduce basic object-oriented features, Ada95 provides tagged types as an 
extension to the existing concept of a record. Class wide types provide a means to declare objects that may 
(polymorphically) hold any of a number of related tagged type values, or corresponding access type values. The 
Ada95 language requires primitive operations on a tagged type to appear in the same declaration list as the type 
declaration, and to have at least one parameter or a return type that is of the tagged type. Operations can also be 
provided that take a corresponding class wide parameter. An Ada package that defines a single tagged type and 
primitive and class wide operations on that type corresponds to the concept of a class in C++ and Java [15, p. 169, 
section 6.2.1]6. The dynamic loading of classes is generally not supported, and only single inheritance of either 
interface or implementation is permitted. For tagged types, the run time type (tag) of an object is assigned at the 
point at which it is created and cannot be changed during the object’s life time. 

With regard to the Simple overriding rule:, code reviews should be used to enforce the rule that an overridden 
version of a method can only report either the same errors, or a more restricted set of errors than its parent version. 
The other restrictions are enforced by the language. 

Tagged types provide the run-time type information (tag) required to make dispatching calls to primitive operations 
associated with a type. Dynamic dispatch occurs when the argument corresponding to the tagged type parameter is 
of a class wide type (polymorphic). With regard to the Simple dispatch rule:, the risk is that an overridden operation 
might be called with an argument declared to be of a specific tagged type, when the argument itself has the run-time 
tag of some derived type7. This can occur because Ada95 permits view conversions between specific tagged types so 
long as this conversion is toward the root of the hierarchy [10, pp. 278]. In such conversions the underlying object 
(and its tag) are not changed, only the program’s view of it [10, pp. 288]. The easiest way to enforce the Simple 
dispatch rule:,  is to forbid view conversions between specific tagged types, ensuring that all arguments are either of 
a class wide type or of a specific tagged type with a matching tag. Conversions between a specific tagged type and a 
class wide type of an ancestor type, however, are still allowed. 

In accordance with the Initialization dispatch rule:, the body of a constructor should not be permitted to call any 
operations on the object under construction except other constructors or private operations. Ada95 does not provide 
implicitly called constructors. By convention, however, we can provide initialization procedures that can be called 
explicitly.  

Such an initialization procedure should call the parent type’s initialization procedure to initialize all inherited fields, 
then initialize the fields defined by the type extension. In accordance with Method Extension, this call to the parent 
initialization procedure should involve an explicit view conversion of the argument to the specific parent type, 
intentionally avoiding the use of dynamic dispatch. To help ensure the initialization procedure is called when an 
object is created, we can also provide a create function [15, p. 194] that allocates the object, calls the initialization 
procedure, and returns the initialized result. 

The bounded and deterministic nature of dynamic dispatch must be demonstrated based on the actual 
implementation. Typically, however, dispatch tables are constructed by the compiler or linker, making dispatch 
times both small and fixed.  

B.1.1.6 C++ guidelines 
C++ is a strongly typed language if conversions between logically unrelated types are avoided. Since such 
avoidance is not possible within the constructs of the language itself, a tool that specifically checks for such 
conversions must be used. C++ supports single dispatch based on the target object of the method call. The dynamic 

                                                           
6 Although, unlike C++ and Java, we cannot control the visibility of individual attributes (record fields). This, however, is of little 
consequence if all data is hidden, as in normal practice. The Ada95 tagged type can be designated as private to ensure this. 
7 This would not be a problem if the argument were declared to be of a class wide type because dynamic dispatch would then 
occur.  
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loading of classes is generally not supported. The run time type of an object is assigned at the point at which it is 
created and cannot be changed during the object’s life time. 

With regard to multiple inheritance, code reviews should be used to ensure that only single inheritance is permitted 
with respect to implementation. 

With regard to the Simple overriding rule:, code reviews should be used to ensure that the overridden version of a 
method can only report either the same errors, or a more restricted set of errors than its parent version. Overriding 
methods should not declare default parameter values [16, p. 171]. All other restrictions are enforced by the language. 

Dynamic dispatch occurs in C++ when the called method is declared to be virtual and the target object is specified 
as a pointer or reference. With regard to the Simple dispatch rule:, , the risk is that an overridden operation might be 
called with respect to a target object whose declared type is a superclass of its actual run-time type, and dynamic 
dispatch might not occur.  

To avoid problems with the declaration of overridden methods, a subclass should never be allowed to redefine an 
inherited non-virtual function [16, p. 169]. This requires all public and protected operations to be declared using the 
keyword “virtual” if subclasses are allowed to redefine them.  

To avoid problems with the specification of the target object, all calls to virtual functions should involve a target 
object specified as a pointer or reference. 

Since the normal rules for dynamic dispatch do not apply during the execution of constructors and destructors, direct 
and indirect calls to overridden methods during their execution should also be avoided. 

Doing so is also consistent with the Initialization dispatch rule:, , which forbids calls to overridden methods during 
object construction.  

The bounded and deterministic nature of dynamic dispatch must be demonstrated based on the actual 
implementation. Typically, however, dispatch tables are constructed by the compiler or linker, making dispatch 
times both small and fixed. 

B.1.2 Extension of the Method Extension Guidelines 
The following sections extend the definition of Method Extension to describe its implementation in Java, Ada95, and 
C++. 

B.1.2.1 Java guidelines 
In Java, the implementation of these guidelines involves a call to the superclass version of the same method using 
the keyword super. Only calls to the superclass version of the same method should be allowed. 

B.1.2.2 Ada95 guidelines 
In Ada95, the implementation of these guidelines involves a view conversion from the derived type to the parent 
(superclass) type and then a call to the parent operation that supports this implementation. This has the same effect 
as the use of the keyword super in Java. Only calls to superclass versions of the same method should be allowed. 

B.1.2.3 C++ guidelines 
In C++, the implementation of these guidelines involves qualification of the  “::” operator. Only qualified calls to the 
immediate base class version of the same member function should be allowed. In addition, the “::” operator may be 
used under the following circumstances:  

• If class A defines method f() and then class B inherits A and defines method f(int), within class B the method f() 
is hidden by the declaration of f(int). The only way to get f() from within B is to use ‘A::f()’. This is considered 
to be safe if f() cannot be overridden (i.e. it is not declared ‘virtual’). Similarly, the “::” operator is needed to 
access global functions that are hidden by method declarations (although global methods should generally be 
avoided), and to access methods declared in a namespace. 
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• When code is generated by a tool and a method call is made using an object whose exact type is known, it is 
reasonable for the tool to use the ‘::’ qualification to avoid the overhead of dynamic dispatch.  
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B.2 Multiple Inheritance 

B.2.1 Composition involving multiple inheritance 
The following cases illustrate the primary issues to be resolved with respect to composition involving multiple 
inheritance. They are based on examples appearing in Meyer [18]. 

B.2.1.1 Case 1: Repeated inheritance 
“As soon as multiple inheritance is allowed into a language, it becomes possible for a class (e.g. FrenchUSDriver) to 
inherit from two classes (e.g. FrenchDriver and USDriver), both of which are subclasses of the same class (e.g. 
Driver). This situation is called repeated inheritance.” [18, p. 543]. It is characterized by the diamond shape of the 
inheritance hierarchy (Figure B.2-1 ). 

 

Driver

getAge() : int
getAddress() : String
getViolationCount()
passBirthday()
payFee()

<<Interface>>

FrenchDriver
<<Interface>>

USDriver
<<Interface>>

FrenchUSDriver
<<Interface>>

Figure B.2-1 Repeated inheritance: sharing and replication, based on [18, p. 547] 

The fundamental question with respect to repeated inheritance is whether inheritance of the same operation along 
more than one path should result in a single operation in the subinterface or in multiple operations.   

Since we are dealing with this issue with respect to interfaces (and not implementation), we must view this question 
from the client’s perspective. In general, a client will be satisfied if all subinterfaces of a given interface inherit a 
definition of the expected operation. Since this is guaranteed (we will have at least one definition of the operation), 
clients will always be happy in this regard.  

The remaining question is whether repeated inheritance should ever result in more than one definition of the 
operation in the subinterface. A case for this can be made by the example appearing in Figure  B.2-2. Each driver [of 
a motor vehicle] has an age, and a primary residence (and associated address). We are also interested in tracking the 
number of traffic violations committed by the driver, leading to a potential revocation of the person’s license. 
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Subinterfaces of Driver represent French drivers and US drivers. Drivers who have licenses in both countries are 
categorized as both French and US drivers8. 

In terms of this example, it is clear that there should be a single operation to get the driver’s age, which will be the 
same in both countries. Address and number of traffic violations, however, are potentially a different matter. The 
driver may have different addresses in each country and traffic violations committed in one country may not count 
against his/her driving record in the other. Similarly license fees may have to be paid at different times in each 
country and paying the fee in one country will not necessarily satisfy the other (although it may be possible to obtain 
an international driving license that can be used in both). 

The need to be able to define both shared operations (such as getAge and passBirthday) and replicated operations 
(such as getAddress, getViolationCount and payFee) can be satisfied in a number of ways.  

We could require that all replicated operations be specified redundantly. Doing so, we would require that 
FrenchDriver define the operation getFrenchAddress, while UsDriver defines an otherwise identical operation 
getUsAddress.  

Alternately, the language could simply permit the renaming of those operations to be replicated in the subinterface 
and assume that repeated inheritance otherwise implies sharing. This is appealing because the situations in which 
replication is the right choice are relatively rare. In most cases (especially those  involving interfaces), sharing is the 
desired result. As Meyer notes, “Cases of repeated inheritance similar to the transcontinental drivers (Figure  B.2-2), 
with duplicated operations as well as shared ones, do occur in practice, but not frequently.” The case involving only 
shared operations is far more common, especially with regard to interface inheritance. For this reason, it is most 
important that sharing be supported well at the language level, or in any guidelines we prescribe. Additional work 
(or the use of work arounds) is probably acceptable in the less common case involving replication. 

Sharing is also appropriate when we view multiple interface inheritance as a means of breaking up a large interface 
specification into smaller interface specifications (superinterfaces) intended for particular categories of clients. In 
Figure B.2-3, for instance, we begin with the definition of a single large interface AvionicsDataServiceInterface. 
This interface is large because it contains the operations needed by all clients. This, unfortunately, makes it 
unwieldy for them all.  

No particular type of client, however, may need the full set of operations. Rather clients of type Producer may need 
a given subset of the operations, while clients of type Consumer may need a different (but overlapping) subset, and 
so on. To simplify each client’s view, we define a separate interface containing only the operations that it needs 
(Figure B.2-4). Because operations that appear in more than one of these client specific superinterfaces have the 
same source (AvionicsDataServiceInterface), it is clear that they are intended to represent the same operation. (The 
operation getDataChannel in the Producer interface is the same as the operation getDataChannel in the Consumer 
interface because both are taken from the definition of getDataChannel provided by AvionicsDataServiceInterface.) 
As a result, definitions of such operations should always be shared. This view is also consistent with the policies of 
Java and C++.  

                                                           
8 Bertrand Meyer, whose wife is French, is a case in point. 
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Driver

getAge() : int
getAddress() : String
getViolationCount()
passBirthday()
payFee()

<<Interface>>

FrenchDriver
<<Interface>>

USDriver
<<Interface>>

FrenchUSDriver

getFrenchAddress() : String
getUsAddress() : String
getFrenchViolationCount()
getUsViolationCount()
pay FrenchFee()
pay UsFee()

<<Interface>>

 
Figure  B.2-2  Shared and replicated operations 
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AvionicsDataServiceInterface

ini t()
addDataChannel(name : String) : DataChan...
deleteDataChaqnnel(name : String)
deleteDataChannel(channel : DataChannel)
getDataChannel(name : String) : DataChan...
getAllProducerDataItems(channel  : DataCh...
getAllConsumerDataItems(channel : DataCh...
assignBandwidth(channel : DataChannel, m...
advertise(name : String) : DataItem
subscribe(name : String) : DataItem
setProducerRole(channel : DataChannel, pu...
setConsumerRole(channel : DataChannel, p...
setDataValue(i tem : DataItem, validity : boo...
setDefaul tValue(item : DataItem, validity : b...
sendDefaul t(i tem : DataItem)
setRate(item : DataItem, rateInHertz : float)
setPriori ty(i tem : DataItem, priority : int)
getDataIValue(tem : DataItem, out validity ...
isStale(i tem : DataItem) : boolean

 

Figure B.2-3 A Single large interface to an avionics data source 

ProducerInterface

getDataChannel(name : String) : DataChan...
advertise(name : String) : DataItem
setProducerRole(channel : DataChannel, pu...
setDataValue(i tem : DataItem, validi ty : boo...
setDefaul tValue(item : DataItem, val idity : b...
sendDefaul t(i tem : DataItem)

ConsumerInterface

getDataChannel(name : String) : DataChannel
subscribe(name : String) : DataItem
setConsumerRole(channel  : DataChannel , pu...
setRate(item : DataItem, rateInHertz : float)
setPriori ty(i tem : DataItem, priority : int)
getDataIValue(tem : DataItem, out val idity : V...
isStale(i tem : DataItem) : boolean

AvionicsDataServiceInterface

ini t()
addDataChannel(name : String) : DataChan...
deleteDataChaqnnel(name : String)
deleteDataChannel(channel  : DataChannel)
getDataChannel(name : String) : DataChan...
getAllProducerDataItems(channel : DataCh...
getAllConsumerDataItems(channel  : DataCh...
assignBandwidth(channel : DataChannel, m...
advertise(name : String) : DataItem
subscribe(name : String) : DataItem
setProducerRole(channel : DataChannel, pu...
setConsumerRole(channel  : DataChannel , p...
setDataValue(i tem : DataItem, validi ty : boo...
setDefaul tValue(item : DataItem, val idity : b...
sendDefaul t(i tem : DataItem)
setRate(item : DataItem, rateInHertz : float)
setPriori ty(i tem : DataItem, priority : int)
getDataIValue(tem : DataItem, out val idity ...
isStale(i tem : DataItem) : boolean

AdminInterface

ini t()
addDataChannel(name : String) : DataChann...
deleteDataChaqnnel(name : String)
deleteDataChannel(channel  : DataChannel)
getDataChannel(name : String) : DataChannel
getAllProducerDataItems(channel : DataChan...
getAllConsumerDataItems(channel  : DataCha...
assignBandwidth(channel : DataChannel, min...

Figure B.2-4  Separate interfaces for different types of clients 
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B.2.1.2 Case 2: Redefinition along separate paths 
The ability to specialize the definition of an operation in a subinterface is fundamental to object-oriented 
development. The same operation, however, may be specialized (redefined) in different ways along different paths 
in the classification hierarchy. The question then arises as to what the result should be when we inherit more than 
one definition/redefinition of the same operation in a given subinterface. 

The answer hinges on whether sharing or replication is intended, and (if sharing is intended) whether the 
specializations are compatible.  

A simple way to guarantee this result is to require the user to define a version of the operation in the subinterface 
that obeys the Simple overriding rule: with respect to each of its parent interfaces. This leads us to the result in 
Figure B.2-5.  

 

A

f() : A

<<Interface>>

B

f() : B

<<Interface>>
C

<<Interface>>

D
<<Interface>>

Figure B.2-5 Redefinition along separate paths, based on [18, p. 551] 

In general, the combined operation has a precondition that represents an or’ing of the preconditions of all inherited 
definitions of the operation, and a postcondition that represents an and’ing of all inherited postconditions. Type 
constraints on in parameters are considered part of the precondition. Type constraints on out parameters and the 
result, and any restrictions on errors reported/exceptions thrown are considered part of the postcondition.  

These guidelines are simply intended to help the user write the correct signature for the combined operation. The 
target language compiler should catch all errors associated with the result of doing so, including errors resulting 
from attempts to combine conflicting definitions. 

Adopting the simple view of interface inheritance as a factoring of a large interface into smaller ones targeted to 
specific categories of clients, we could instead forbid refinement of operations along separate paths. This is certainly 
consistent with the idea that all refinements of an operation be compatible (in this case they would have to be 
identical). However, forbidding refinement of operations may be less flexible than we would like in situations such 
as that given above, and would certainly be more restrictive than is required to type safe9. 

                                                           
9 With respect to the languages of primary interest, the ways in which operations may be refined are limited (C++ permits the 
return type to be made more specific, Java permits the elimination of exceptions from the exception list). The ability to make the 
return type more specific, however, has been shown to have a large effect upon the number of run time casts required [22]. 
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A

f() : A

<<Interface>>

B

f() : B

<<Interface>>
C

<<Interface>>

D

f() : B

<<Interface>>

 

Figure B.2-6 Explicit definition of combined operation in subinterface  

B.2.1.3 Case 3: Independently defined operations with same signature 
A different situation arises when two parent interfaces independently define operations with the same signature. This 
is not repeated inheritance since we are not talking about inheriting the same operation via more than one path, but 
different operations, independently defined, that have the same signature. The key question is whether the matching 
of the signatures is intentional or accidental.  

 

B

sameSignature(i : int) : f loat

<<Interface>>
C

sameSignature(i : int) : f loat

<<Interface>>

D
<<Interface>>

 

Figure B.2-7 Independently defined operations with same signature, based on [18, p. 550] 

If the operations were completely and formally specified, we could compare preconditions and postconditions to see 
if the semantics are the same. If they are, then a single operation that does what they both promise to do should be 
sufficient in all cases.  
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Alternately we could adopt the view that interface inheritance represents only a factoring of a large interface into 
smaller ones targeted to specific categories of clients. If we use interface inheritance in only this way, then it is clear 
that we intend the separately inherited operations to be the same (i.e. sharing is always the right answer). This view 
is also consistent with the policies of Java and C++. 

B.2.2 Extended guidelines 

B.2.2.1 Extension of the Multiple Interface Inheritance Guidelines 
The following sections extend the guidelines for Multiple Interface Inheritance to include language specific 
guidelines for Java and C++. In general, it is only necessary to enforce (e.g., by means of design and code 
inspections) those guidelines that the language does not enforce itself. 

B.2.2.1.1 Java guidelines 
In Java, a UML interface is represented by a Java interface defining only abstract methods and compile time 
constants. Constants whose value is computed at run-time should not be permitted, even when this value is 
computed once and never again changed. 

The Java language enforces the Repeated interface inheritance rule:. Where operations should be replicated rather 
than shared, they must be given distinct names. 

Java implicitly combines redefined methods inherited along different paths, enforcing the subtyping guidelines with 
respect to method signatures and the use of checked exceptions. It also permits the explicit combination of redefined 
methods in the sub-interface as recommended by the Interface redefinition rule:. Code reviews must be used to 
enforce this. 

When more than one super-interface independently defines a method with the same signature, Java considers them 
to represent the same method. Code reviews must be used to ensure this is the real intent, i.e. that the matching of 
signatures is not simply accidental. As suggested by the guidelines for Multiple Interface Inheritance, a comment 
annotation should be used to document this intent, ensuring it is properly maintained. 

B.2.2.1.2 C++ guidelines 
In C++, a UML interface is represented by an abstract class defining only pure virtual member functions and 
compile time constants. Constants whose value is computed at run-time should not be permitted, even when this 
value is computed once and never again changed. 

In accordance with the Repeated interface inheritance rule:, all base classes of a C++ interface class must be virtual 
base classes. Where operations should be replicated rather than shared, they must be given distinct names. 

C++ implicitly combines redefined methods inherited along different paths, enforcing the subtyping guidelines with 
respect to method signatures. It also permits the explicit combination of redefined methods in the sub-interface as 
recommended by the Independent interface definition rule:. Code reviews must be used to enforce this. 

When more than one super-interface independently defines a method with the same signature, C++ considers them 
to represent the same method. Code reviews must be used to ensure this is the real intent, i.e. that the matching of 
signatures is not simply accidental. As suggested by the guidelines for Multiple Interface Inheritance, a comment 
annotation should be used to document this intent, ensuring it is properly maintained. 

B.2.2.2 Extension of the Multiple Implementation Inheritance Guidelines 
The following section extends the guidelines for Multiple Implementation Inheritance to include language specific 
guidelines for C++. In general, it is only necessary to enforce (e.g., by means of design and code inspections) those 
guidelines that the language does not enforce itself. 

3-84 



Volume 3 DRAFT 

B.2.2.2.1 C++ guidelines 
In accordance with the Repeated implementation inheritance rule:, virtual inheritance should be used by default. 
Performance considerations should be taken into account only in response to a demonstrated need, and in 
accordance with the 80-20 rule (which suggests that some 20% of the code is executed 80% of the time).  

Renaming [22, pp. 273..275] should always be used to distinguish inherited methods that are intended to be different 
in the subclass. Otherwise, an overriding method should be defined in the subclass that either selects between the 
competing implementations or otherwise combines them10.  

The overridden methods must be compatible with one another (in terms of their preconditions and postconditions) 
for their overriding by a single overriding subclass method to be valid. This is true both when the competing 
implementations have a common definition in a superclass (in accordance with the Implementation redefinition 
rule:) or when they do not (in accordance with the Independent implementation definition rule:). 

                                                           
10 This explicit form of selection is preferred even though C++ provides for implicit selection in some cases in accordance with its 
own dominance rule [22, p. 263]. 
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B.3 Dead and Deactivated Code, and Reuse 
B.3.1 Deactivated Code Examples 
Figure B.3-1 presents a class (C_x) being used by a client (our system). In this diagram, the methods (M_x) are 
annotated with the attributes (A_x) and methods they access in italics, as is the client. From the point of view of the 
client, class (C_3), methods (M_3, M_4, M_6) and attributes (A_2, A_4) appear to be dead code (i.e., not used by 
this system). 

 

Client

M_1,
M_2,
M_5

C_1

A_1
A_2

M_1() -- A_1
M_2() -- A_1
M_3() -- A_2
M_4() -- A_2

C_2

A_3

M_5() -- A_3, M_1, M_2

C_3

A_4

M_6() -- A_4, M_3, M_4
 

Figure B.3-1 Deactivated Code 
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B.3.2 Hierarchy Changes and Method Overriding 
For an example of a subtle effect in object-oriented (OO) software, consider the classes, shown in Figure B.3-2, 
displayed in both a normal and flattened hierarchy. Here, class C_1, which contains methods M_1() and M_2(). 
M_1() calls M_2(). Now consider a sub-class, C_2 that inherits C_1, but overrides M_2().  M_1() in class C_2 is 
effectively also overridden as it makes a call to a different M_2() than the M_1() in C_1. There are other situations 
where changes in the class hierarchy can be subtle and difficult to discover. 

 

Figure B.3-2 Method Overriding 
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